
HP 16600A-Series
Logic Analysis System
Demo Guide
Publication number 16600-97003
March 1998

For Safety and Warranty information, see the pages behind the index.

© Copyright Hewlett-Packard Company 1998
All Rights Reserved

The HP 16600A-Series Logic Analysis System
Reduces Time to Insight

With the HP 16600A-series logic analysis system:

• You can view target system behavior at many different levels of the
design hierarchy: from analog signals (using an oscilloscope
module), to the timing relationships of signals, to microprocessor
execution, to source code, to bus execution, to overall system
performance. Being able to look at a problem from many
perspectives helps you gain insight into problems faster.

• You can time-correlate different views of target system behavior
(and use multiple views) to analyze the same target system event
in different ways.

• You can use a pattern generator module to provide stimulus to
parts of the target system when testing hypotheses or analyzing
the target system’s response to specific inputs.

• You can use an emulation module to control microprocessor
execution (run, stop, step, breakpoints) and display and modify
the contents of microprocessor registers and memory.

• You can explore data collected from your target system, perhaps
data that captures a rarely occurring problem, in a more efficient
way by taking deep-memory traces and by using post-processing
filtering tools. You can also trigger on a specific sequence of events
and store only the data of interest, and perhaps the context
around that data, to capture execution over a longer time.

• You can export critical data from your target system, import it
later, and compare it to new data.

• You can share the networked logic analysis system among project
team members to facilitate communication and collaborative
debugging.

• You can solve problems quickly and move on to the next problem,
speeding up your overall development time.
2

These capabilities let you identify problems and track them to
their root cause. They let you explain all the symptoms of a
problem and give you confidence in your solution.
 3

In This Book

This demo guide shows many of the things you can do with the
HP 16600A-series logic analysis system. It’s part of a demo kit
that includes a MPC860 microprocessor-based system.

You can probe the MPC860 demo board by connecting the logic
analyzer modules and emulation modules. Later you will
connect an oscilloscope module. Then, you can follow the
instructions in this guide to capture and analyze MPC860 demo
board execution. You will see some of the more powerful ways
you can use the logic analysis system to debug and verify your
own target systems.

This demo guide shows:

• You can quickly set up the logic analysis system to capture
hundreds of waveforms. You can also use the Setup Assistant to
quickly trace microprocessor execution, inverse assemble the
microprocessor trace, perform run control functions, and
correlate source code.

• You can quickly find hardware and software interaction problems
by correlating views of the captured data with traces of
microprocessor execution, and by analyzing system performance.

• You can quickly find the cause of difficult hardware problems
using HP’s deep-memory logic analyzers, high-speed logic
analyzers, and pattern generators.

This demo guide also contains an appendix that describes the
MPC860 demo board and its firmware in more detail and state
and timing.
4

Contents
The HP 16600A-Series Logic Analysis System

Reduces Time to Insight

In This Book

1 Getting Started

Connecting the demo board to analyzer 10
Connecting the demo board to the emulation module 12

2 Quickly Set Up the Analysis System

Tracing Hundreds of Your Target’s Signals 14
Connecting the analyzer to your target 15
Using an HP logic analysis module 16

Tracing Processor Code Execution with Source Code
Correlation 22
HP’s Processor Solutions 22
Using the Setup Assistant 27

3 Quickly Find the Cause of Difficult HW/SW Interaction

Problems

Looking at Correlated Hardware/Software Traces 42
Correlating processor execution with external buses 43
Tracking hardware problems to their software causes 52
Tracking software problems to their hardware causes 61

Looking at Firmware Driver Issues 70
Controlling and modifying processor execution 71
Downloading code to RAM or Flash ROM 80
 5

Contents
Looking at Software Issues 83
Analyzing system performance 84
Using context store 91
Tracking processor execution with caches turned on 99

4 Quickly Find the Cause of Difficult Hardware Problems

Capturing Very Deep Traces 106
Using logic analyzers with deep memory 107

A About the MPC860 Demo Board

Demo Board Hardware 114
Introduction 114
Configuring the Logic Analysis System for the Demo Board 114
Demo Board Connector Mapping 118
Demo Board Features 122

Demo Board Firmware 127
Introduction 127
Overview of main() 127
Overview of proc_specific 130
Variables 131
Using the PowerPC 860 Emulation Module 134

Recommended Demo Configuration 135
Why use Recommended Demo Configuration 135

B Concepts

Timing Analysis vs. State Analysis in Logic Analyzers 138
6

Contents
Glossary

Index
 7

Contents
8

1

Getting Started
9

Chapter 1: Getting Started
Connecting the demo board to analyzer

The following provides instructions for connecting the demo
board to the logic analyzer. The instructions, as well as the
entire guide, assume that your analysis system has the
recommended configuration of modules.

Go to “Recommended Demo Configuration” on page 135 for
instructions on verifying your configuration.

If the logic analysis system does not have the recommended
configuration, you can still connect the demo board by
following the instructions provided by the Setup Assistant (go
to “Using the Setup Assistant” on page 27). However, some of
the exercise may not work properly; this will depend on the
particular configuration you use.

First connect the logic analysis modules. The recommended
demo configuration has 12 pods of logic analysis. The first 5
pods are used to capture MPC860 demo board execution.

Pod 1

Pod 2

Pod 3

Pod 4

Pod 5

Pod 6

Pod 7

Pod 8

Pod 9

Pod 10

Pod 11

Pod 12
10

Chapter 1: Getting Started
Connect the logic analyzer pods to the demo board connectors
as described in the following table:

'HPR�ERDUG /RJLF�$QDO\]HU

3RG�� 6ORW�$��3RG��

3RG�� 6ORW�$��3RG��

3RG�� 6ORW�$��3RG��

3RG�� 6ORW�$��3RG��

3RG�� 6ORW�$��3RG��

Digital Systems
Debug Demo

Slot A, Pod 3 Slot A, Pod 4

Slot A, Pod 1 Slot A, Pod 2

Slot A,
Pod 5
 11

Chapter 1: Getting Started
Connecting the demo board to the
emulation module

Now, connect the emulation module.

If the emulation module cable is not connected to the
emulation module, do so now. Connect the other end of the
cable to the demo board. It goes on the edge with no logic
analyzer cables connected to it.

Emulation Module
12

2

Quickly Set Up the Analysis
System
13

Chapter 2: Quickly Set Up the Analysis System
Tracing Hundreds of Your Target’s Signals
Tracing Hundreds of Your Target’s Signals

Being able to capture and display a large number of logic
analyzer channels helps you look at more target system
execution at one time.

• By using a logic analyzer’s flying lead set, you can probe and look
at digital signals in any part of a target system.

• By loading the HP 16600A-series logic analysis system with logic
analyzer cards and using the logic analysis system’s display
capabilities, you can easily view and manage a large number of
waveforms.
14

Chapter 2: Quickly Set Up the Analysis System
Tracing Hundreds of Your Target’s Signals
Connecting the analyzer to your target

The most common way to probe a target system is with a flying
lead set. The flying lead sets connect to logic analyzer pods to
provide 16 individual data connections and one clock
connection. HP provides a variety of clips and connections that
attach to the flying leads and make it easier to attach to fine-
pitch leads.

Two other methods for attaching the analyzer to your target
system are discussed at the beginning of the next exercise.
 15

Chapter 2: Quickly Set Up the Analysis System
Tracing Hundreds of Your Target’s Signals
Using an HP logic analysis module

HP has a variety of logic analysis modules for tracing your
target system’s signals. They range in channel count, trace
depth, and acquisition speed. This exercise uses the
HP 16600A logic analysis module. However, it pretty much
applies to all HP analysis modules. For an exercise specific to
deep trace, go to “Capturing Very Deep Traces” on page 106.

In this exercise, you will see how the large windows and
features of the HP 16600A-series logic analysis system make it
easy to manage a large number of waveforms. The HP 16600A-
series logic analysis systems can be configured with as many as
1,020 channels of analysis.

1 Probe the MPC860 demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

NOTE: The emulation module connection should NOT be made; it could put
the processor into reset, preventing it from running, which is
necessary for this exercise.

2 Start with the default configuration.

To get a default configuration, go to the “16600A Logic Analysis
System” window, select the “Exit” button in the lower right-
hand corner, and click “OK” in the dialog that comes up.

When the session has ended, go to the “Session Manager”
window, and select “Start Session on This Display”.
16

Chapter 2: Quickly Set Up the Analysis System
Tracing Hundreds of Your Target’s Signals
3 Set up trigger, and run measurement

When the “16600A Logic Analysis System” window has come
up, select the “HP16600A” button on the left-hand side and
select “Waveform<1>...” from the popup menu.

Click the green “Run” button to take a trace of the lower 16 bits
of the address bus.

4 Display the captured data.

Maximize the “Waveform<1>” window.

You are looking at an overlaid trace of 16 bits of the address
bus; in other words, each of the individual traces of the address
bus bits are displayed in this one trace. You can see the
hexadecimal value of the address bus where there is space to
display it.
 17

Chapter 2: Quickly Set Up the Analysis System
Tracing Hundreds of Your Target’s Signals
To see each individual address line, right-click on “Lab1 all” and
select “Expand”. Notice that each “Lab1” is now individually
numbered.

To overlay the lines again, right-click on one of the “Lab1”
signals, and select “Overlay”.

5 Replicate the one occurrence of “Lab1 all” several times.

To get to the point of this exercise, managing a large number of
waveforms, the Lab1 trace will be replicated multiple times.

Right-click on “Lab1 all”, select “Insert after...”, and a label
dialog comes up. This dialog lets you add more labels to the
display, either one bit at a time or as overlaid signal sets. The
default is overlaid. Add 9 more of the overlaid “Lab1 all” to the
Waveform<1> window by clicking “Apply” 9 times; then, close
the dialog.
18

Chapter 2: Quickly Set Up the Analysis System
Tracing Hundreds of Your Target’s Signals
6 Add color to waveforms.

We now have a total of 160 waveforms displayed. To help
identify them more easily, you can add some color.

Pick the second “Lab1 all” from the top, right-click on it, and
select “Change attributes...”. Select the red radio button to the
right of “Color” and click “OK”.

Try changing some of the other “Lab1 all”.

Now, expand one of the colored “Lab1 all” and see how the
coloring helps you to follow the timing waveforms.

7 Zoom in on the information of interest.

Pick an area in the waveform trace that you want to look at
more closely. Left-click inside the black waveform display area
to the left of the area of interest to you. Drag the mouse to the
right side of the area you are interested in. This will display a
rectangle encompassing the area that the display will be
expanded to.
 19

Chapter 2: Quickly Set Up the Analysis System
Tracing Hundreds of Your Target’s Signals
When you let go the mouse button, the display will expand
horizontally so you can better see the area you are interest in.

8 Use timing markers to establish the timing relationship
between edges in the waveforms displayed.

Right-click on an edge that you are interested in, select “Place
Marker >”, and select “G1”.

Right-click on another edge that you would like timing
information about relative to the G1 marker, and select “G2”.

Select the “Markers” tab and select the list arrow next to the
text window for the G1 marker that says “Trigger”.

Rectangle
20

Chapter 2: Quickly Set Up the Analysis System
Tracing Hundreds of Your Target’s Signals
Select G2 from the list. What you see displayed to the right of
the G1 marker line is the time between the G1 and G2 markers.

If you would like to learn more about the analysis system’s
search capabilities, go to “Capturing Very Deep Traces” on
page 106.

Summary By using the logic analysis system’s large display capabilities,
you can easily view and manage a large number of waveforms.
 21

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Tracing Processor Code Execution with
Source Code Correlation

HP’s Processor Solutions

Probing target system circuits can be difficult. The narrow
spacing of surface mount package pins and the dozens of
connections that a microprocessor requires might make the
task seem almost impossible.

However, HP and its channel partners provide products that
make probing surface mount packages and microprocessors
easier. HP also provides products like emulation modules and
the source correlation tool set that make debugging
microprocessor execution easier.

Analysis Probes

HP and its channel partners provide analysis probes for
probing microprocessors and standard buses. Analysis probes
are available for over 200 microprocessors and standard buses.

Analysis probes provide the mechanical connection, electrical
connection, active circuitry (when necessary), and the
software required to trace and inverse assemble
microprocessor execution. The following demo, “Using an HP
logic analysis module” on page 16, will give you a good feel for
the benefits provided by analysis probe software.
22

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Analysis probes plug into Pin Grid Array (PGA) sockets, bus
connectors, and even clamp over Thin Quad Flat Pack (TQFP)
packages and connect to Ball Grid Array (BGA) footprints.
They bring dozens of connections out to logic analyzer pods.
Analysis probes are typically low profile compact boards with
minimum capacitive loading.

Designing Connections into Your Target System. When
probing microprocessor cores embedded in ASICs or when
analysis probes cannot be used for some other reason, you can
design logic analyzer connections into your target system and
purchase an inverse assembler for your processor separately.

HP provides information on designing several types of logic
analyzer connections into target systems (which vary in cost
and connection density).

Connectors can range from the 0.1 inch 2x20 connectors (like
the five around the edge of the MPC860 demo board) to the
high-density Mictor38 connectors (like the three on top of the
demo board). The Mictor38 connectors provide connections for
two logic analyzer pods each, while the 2x20 connectors
provide connections for one logic analyzer pod. The Mictor38
connectors require that you use the HP E5346A high-density
termination adapters.
 23

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Emulation Modules

The HP 16600A-series logic analysis system can contain
emulation modules that use a processor’s Background Debug
Mode (BDM) or JTAG port to control the processor. You can
run a microprocessor, stop it, set breakpoints, modify the
contents of microprocessor registers and memory locations,
and download code to RAM and Flash ROM.

HP’s emulation modules require a Target Interface Module
(TIM) to connect to the processor’s BDM or JTAG port (see
picture). A different TIM is used for each processor or
processor family to adapt the emulation module’s connections
to the processor’s. The 860 demo board that you will be using in
the following demo exercises does not need a TIM because we
have built it into the board.

Emulation Module
24

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Emulation Probes

Emulation probes are just stand-alone emulation modules.
They, combined with a commercial debugger, provide an
economical run control solution.

Emulation probes can also be accessed from the HP 16600A-
series logic analysis system to provide run control for more
than two processors.

Below is a drawing of an emulation probe with a TIM attached.
 25

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Source Correlation Tool Set

The source correlation tool set add-on for the HP 16600A-
series logic analysis system lets you view the source code that
corresponds to data captured on the microprocessor bus.

The source correlation tool set requires that symbol
information be loaded into the logic analyzer from the target
system program’s object file.

Processor Solution Packages

You can order HP processor solution packages that combine
an analysis probe, an emulation probe, and the source
correlation tool set for a particular microprocessor.

Processor Solution Information on the Web

You can find up-to-date processor solution information on the
world-wide web at:

http://www.hp.com/go/uPsolutions

Or, contact your HP sales representative.
26

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Using the Setup Assistant

The HP 16600A-series logic analysis system includes a setup

assistant to help you configure the logic analyzer for a
particular analysis probe. It also configures the emulation
module for the selected processor and helps you read in your
symbol file for the inverse assembly and Source Viewer.

The setup assistant analyzes the configuration of your logic
analyzer and the type of microprocessor you want to trace.
Then, it asks what options you want implemented. The setup
assistant tells you how to connect the analyzer probes, and it
creates the necessary configurations.

You only need to run the setup assistant when you start
working with a new processor or when you change the
configuration of the logic analyzer. Once the setup assistant has
created a configuration, it can be saved and reloaded.

The following steps show you how to use the setup assistant to
trace microprocessor execution on the MPC860 demo board
and view the source code associated with captured data.

1 Start with the default configuration.

To get a default configuration, go to the “16600A Logic Analysis
System” window, select the “Exit” button in the lower right-
hand corner, and click “OK” in the dialog that comes up.

When the session has ended, go to the “Session Manager”
window, and select “Start Session on This Display”.

2 Start the setup assistant.

Go to the “16600 Logic Analysis System” dialog and select
“Setup Assistant” from the bottom buttons.
 27

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
The “Setup Assistant – Introduction” dialog will be launched.
Select “Full measurement - …..” and then select “Next -->” to go
to the next dialog.

3 Identify your microprocessor

The “Setup Assistant – Target and Analysis Probe or Interface
Software” dialog now comes up. This is where you tell the setup
assistant what processor you are using and whether you are
using an analysis probe or connecting directly to your target.

0LFURSURFHVVRU�6XSSRUW

Processors are added on a regular basis, so if you do not see the
one you need, check with your HP sales representative to see if it
has become available.
28

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Tell the setup assistant you are using the MPC860 demo board
(which has built-in connections for the logic analyzer).

Select “Demo” from the list which expands to “MPC860 Demo
Board” and “HP Digital Systems Debug”, then go to the next
dialog.

4 Select the logic analyzer.

The “Setup Assistant – Select Logic Analyzer” dialog is now up.
This dialog presents you with a list of analyzer modules
installed in your system that are suitable for the analysis probe
you are using.

If you have the standard demo set of modules in your system,
only one analyzer is listed. Select the logic analyzer, and go to
the next dialog.
 29

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
5 Connect the demo board to the logic analyzer.

This brings up the “Setup Assistant – Connecting to the Logic
Analyzer” dialog. This dialog tells you how to connect the
analyzer module to the demo board.

When you are done connecting the logic analyzer to the demo
board, select “Next -->”.

The setup assistant now loads the proper configuration for the
demo board, and the proper inverse assembler, into the
HP 16600A analysis module. Click “OK” to clear the

Pod 1

Pod 2

Pod 3

Pod 4

Pod 5

Pod 6

Pod 7

Pod 8

Pod 9

Pod 10

Pod 11

Pod 12
30

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
informational dialogs that pop up during this part of the
exercise.

NOTE: Don’t connect the pattern generator just yet. The default pattern
generator signal level outputs will turn off the MPC860 demo board’s
LCD display.

6 Set the inverse assembler preferences and filter for the
demo board.

NOTE: It is important that you follow the instructions in the “Setup Assistant
- Additional Analyzer Information” dialog. This is not optional.

Follow the instructions in the “Setup Assistant – Additional
Analyzer Information” dialog for entering the demo board
memory map and for setting up the filter.

Note that the MPC860 processor does not provide status
information that distinguishes between data and instruction
fetches. Therefore, you must provide that information.

After you have set the inverse assembler preferences and filter
for the demo board, go to the next dialog.
 31

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
32

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
7 Connect the demo board to the emulation module.

The “Setup Assistant – Emulation” dialog comes up at this
point.

If you have the standard demo set of modules, the setup
assistant will detect an emulation module in your system.
 33

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Select “Yes” to have the MPC860 personality loaded into the
module, then go the next dialog.

The “Setup Assistant – Emulation Module/Probe Connections”
dialog gives you instructions on how to connect the emulation
module to the demo board.

When you finish connecting the emulation module cable,
proceed to the next dialog.
34

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
The setup assistant will now install the MPC860 personality and
launch the “Run Control – Emulator 1” dialog.

8 Turn on the Source Viewer.

The “Setup Assistant – Source Correlation” dialog should now
be up. If it isn’t, it could be that the source correlation tool set
license has not been turned on for the system you are using.
Contact your HP representative to get this corrected.

Select “Yes” to have the setup assistant install the source
correlation tool set. The source correlation tool set lets you

Emulation Module
 35

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
view the high-level source code associated with data captured
by the logic analyzer.

Go to the next dialog.

9 Identify the location of the demo board’s source code.

The “Setup Assistant – Source Code Location” dialog helps you
load your source code. Source code can be located on a remote
computer in your network (if the logic analyzer has been
connected to the network), or you could have transferred the
source code to the logic analyzer’s hard disk. In this example,
the source code for the demo board is located on the logic
analyzer’s hard disk.

Select “on the 16600A hard disk” and go to the next dialog,
“Setup Assistant – Symbol Loading”.
36

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
10 Load the symbol file.

Select “Load Symbol File…”.

The dialog launched is the analysis module’s Setup dialog. The
“Symbol” tab has been pre-selected for you. Select the
“Browse…” button next to the “Load This Object/Symbol File for
Label: ADDR” text box.

Open the demo folder by clicking on the plus symbol in front of
it. Open the 860_demo_board folder, select the Source folder,
and then scroll down to the file called q.elf.
 37

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
Select the “q.elf” file in the “demo/860_demo_board/Source”
directory, and click the “Load” button. The symbol file for the
demo board has now been loaded.

Minimize the “100MHz State/250MHz Timing A– MPC860 BUS”
dialog.

Go to the next Setup Assistant dialog. You will find that this
opens the Source Viewer display and the Listing display. These
are the dialogs that you will use to trace the MPC860
microprocessor.

11 Save the configuration.

The “Setup Assistant – Saving to Disk” dialog is now up. This
dialog prompts you to save your configuration to disk. If you
save the configuration, you can load it the next time you turn
38

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
on the analyzer; this lets you configure the logic analysis system
without having re-run the setup assistant.

12 Exit the Setup Assistant.

The “Setup Assistant – Taking Measurements” dialog is your
last dialog in the Setup Assistant.

Since you will be getting help from this demo guide as to what
to do next, just select “Done” for now.

:KDW�WR�'R�1H[W

You can get some suggestions about what to do next by selecting
“Next Steps”. This will take you into the on-line help system.
 39

Chapter 2: Quickly Set Up the Analysis System
Tracing Processor Code Execution with Source Code Correlation
13 Start MPC860 demo board execution.

Now you are ready to take a trace. First, you must get the
MPC860 microprocessor running. Run Control starts up in reset
by default. Click the “Run” button in the “Run Control –
Emulator 1” dialog, you should see “MPC860—Running user
program” at the bottom of the dialog.

14 Capture MPC860 demo board execution.

Now, click the green Run button in any window and the
analyzer will take a trace for you.

15 Display the captured data.

Open the “Listing” display. Scroll through the listing and watch
how the source viewer follows along.

Go to the Source Viewer display, select the “Step Source” tab,
and click “Previous” and “Next” to step through the source
code. Watch how the “Listing” trace follows the source code.

Summary You can quickly set up the logic analysis system to capture a
specific microprocessor’s execution using HP’s probing, run
control, source code viewing, and setup assistant tools.
40

3

Quickly Find the Cause of
Difficult HW/SW Interaction
Problems
41

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Looking at Correlated Hardware/Software
Traces

Being able to look at a problem from different perspectives
helps you gain insight into problems faster.

• By looking at different areas in a target system and by time
correlating the captured data, you can view the flow of data from
one part of the target system to the next.

• By looking at the analog values of a signal as well as the digital
values and by time-correlating the captured data to a trace of the
processor, you can see how hardware symptoms might be caused
by a software problem or how software symptoms might be caused
by a hardware problem.
42

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Correlating processor execution with
external buses

You can follow the flow of data in a target system by capturing
and correlating data from different parts of the target system.
For example, you can see how data flows from a
microprocessor bus to an external bus or port.

On the MPC860 demo board, you can capture code executed on
the microprocessor bus and correlate it to the waveform trace
captured on the asynchronous, serial Controller Area Network
(CAN) bus.

Also, you can use the logic analysis system’s serial analysis tool
set to interpret the waveform trace of the CAN bus.

As is the case in this demo, you can configure a logic analysis
module into two “virtual” logic analyzers:

• one logic analyzer that captures microprocessor execution
synchronously with the microprocessor’s clock (a state

analyzer).

• one logic analyzer that captures data on the CAN bus
asynchronously at sample rate determined by an internal clock (a
timing analyzer).

$QDO\VLV�3UREHV�IRU�6WDQGDUG�%XVHV

$QDO\VLV�3UREHV�DUH�DYDLODEOH�IRU�RYHU�D�GR]HQ�EXVHV��7KLV�LQFOXGHV�3&,��,6$��
3&0&,$��6&6,�������DQG����86%��90(��DQG�PRUH��$QDO\VLV�SUREHV�PDNH�LW�HDV\�WR�
FRQQHFW�WKH�ORJLF�DQDO\]HU�WR�D�EXV��7KH\�SURYLGH�FLUFXLWU\�WR�GHFRGH�WKH�EXV·V�
YDULRXV�VWDWHV��DQG�WKH\�FRQILJXUH�WKH�DQDO\]HU�WR�FRUUHFWO\�SUHVHQW�WKH�EXV·V�VWDWHV�
LQ�V\PEROLF�IRUP�

9LVLW�WKH�+3�ZHE�VLWH�DW�ZZZ�KS�FRP�JR�X37RROV��RU�FRQWDFW�\RXU�+3�VDOHV�
UHSUHVHQWDWLYH��IRU�D�FXUUHQW�OLVW�RI�EXVHV�VXSSRUWHG�E\�DQDO\VLV�SUREHV�
 43

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
(For more explanation of the difference between timing and
state analyzers, see “Timing Analysis vs. State Analysis in Logic
Analyzers” on page 138.)

The two virtual analyzers can run independently, or, as in this
demo, the trigger of the MPC860 BUS analyzer can arm the
DemoTiming analyzer.

For this exercise, Analyzer1, called “MPC860 BUS”, is
configured as a state analyzer to trace the demo board’s
processor. Pods 1 through 4 of the slot A analysis module have
been assigned to this analyzer. These pods are connected to the
processor.

Analyzer2, called “DemoTiming”, is configured as a timing
analyzer. Pods 5 and 6 of the slot A analysis module have been
assigned to this analyzer. Pod 5 is connected to the CAN bus TX
line, IRQ2, and CAN clock.

MPC860 BUS
Analyzer Listing <1>

Waveform <1>

Listing <2>

DemoTiming
CAN Analyzer

Serial
Analysis

MPC860 Listing

CAN Waveform

Serial Tool
Listing

860
Microprocessor

CAN
Controller

CAN Clock

IRQ2

Bus Signals
Captured State Data

Captured Timing DataCAN TX

Arm Signal

Trigger
Immediate
44

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
1 Probe the MPC860 demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

NOTE: Make sure the pattern generator data pods are not connected to the
demo board; otherwise, the changes in demo program execution will
affect the results of the measurements that follow.

2 Load the configuration files for this demo.

In the main logic analysis system window, click the File
Manager button.

In the File Manager dialog, select the CAN_bus.___
configuration file from the /hplogic/demo/860_demo_board/
configs/hp1660x directory, and click the Load... button.

In the Load Configuration dialog, click Load.

If a confirmation dialog appears, click Yes.

(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)

3 Make sure the MPC860 demo board processor is running
in a known state.

Click the “Reset”, “Break”, and “Run” buttons in order.
 45

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Resetting the processor starts it from a known state. Breaking
puts the processor into the background monitor and allows the
emulation module to read the microprocessor’s configuration
registers (whose contents enable breakpoints among other
things).

4 Set up to trigger on a source line.

To follow the flow of data from when it is fetched from memory
to when it flows on the CAN bus, first trigger the analyzer that
captures microprocessor execution when data is fetched from
memory.

To set this trigger up, go to the “Browse Source” tab of the
“Source Viewer<1>” window, click “File Selection...”, select the
/hplogic/demo/860_demo_board/source/proc_spec.c file, and
click OK. This is the source code for one of the main functions
executed by the MPC860 demo board.

Scroll down to line 130, which is the beginning of the CAN bus
stimulus routine. You can see that this is where the data string
that is going to be put onto the CAN bus gets built up. This data
string includes marker bytes 11, 22, 33, 44, and temperature
bytes.

If you would like to better understand the purpose of the
temperature values, see the overview of the code that is
executing in the demo board located in the Appendix , “About
the MPC860 Demo Board,” on page 113.
46

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
To set up the logic analyzer trigger, click on line 138 and select
the “Trace about this line” option. Make sure the heading of the
option list says “line # 138.

5 Click the green Run button to perform the measurement.

6 Display the captured microprocessor data.

Go to the microprocessor trace listing, right click in the listing
area, select “Goto Marker >”, and select “Trigger”. This places
the center of the listing on the trigger point. You see that the
highlighted line of the source viewer is line 138.
 47

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Scroll down through the listing and you see the value of the
four temperatures being fetched from memory. The data reads
are in yellow. Notice the correct symbols for the temperatures
are used in the PC column.

Continue to scroll down until you see the turquoise data writes
to the CAN bus controller. You see that the temperature
markers and then the temperatures were written to the
controller. You then see that a 0x43 and 0xE6 was written to
the controller. This told the controller to transmit the data.

7 Display the captured CAN bus data using the serial
analysis tool set.

Now, verify that the correct data was transmitted on the CAN
bus.
48

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Click one of the “Navigate” buttons. Select “DemoTiming >”,
and select Waveform<2>.

This brings up the waveform trace of the CAN bus that was
taken when you last ran the analyzer. It is a trace of the CAN
clock, CAN transmit line, and CAN interrupt line. The trigger
point on the trace is the same trigger point that is on the
processor listing.

Now, look at the output of the serial tool to verify that the
correct data was placed on the CAN bus. Click one of the
“Navigate” buttons”, select “DemoTiming >”, and select
“Listing<2>...”.

This listing is the output of the serial analysis tool. The listing
shows the start block of the transmission (0CCC), the data
transmitted, and the end block (7F). You see that the data
fetched from memory was correctly transmitted on the CAN
bus

8 Use global markers to correlate the captured data.

You can use the global markers to help you look at what the
serial analysis tool is doing.
 49

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Right click in the listing area of the “Listing<2>” dialog. Select
“Place Marker >” and “G1”.

Drag the G1 marker to just under the first 0CCC.

Place the G2 marker in the listing and drag it to just under the
11 in the data stream

Go to the “Waveform<2>” dialog. Place the pointer just to the
left of the beginning of the CAN bus transmission. Click and
hold the left mouse button and drag the left edge of the
rectangle that was formed to a point just to the right of the G2
marker.
50

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
You now have an expanded view of the trace. You can see the
form of the data transmitted on the CAN bus. (Keep in mind
the CAN bus protocol specifies that a 0 gets added, or stuffed,
after five 1s and a 1 gets stuffed after five 0s.)

Summary By looking at different areas in a target system and by
correlating the captured data, you can view the flow of data
from one part of the target system to the next.
 51

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Tracking hardware problems to their
software causes

You can identify a problem with an analog signal using an
oscilloscope module, trigger a logic analyzer module tracing
software execution, and correlate the captured data to identify
the cause of the problem all the way to the source code.

For example, the demo board’s MPC860 processor has been
programmed to generate a triangular waveform from a D/A
converter, but the oscilloscope module shows problems with
the waveform.

There are two problems with the triangular waveform: when
the voltage is flat for approximately 350 microseconds, and
when the voltage is flat for shorter times in varying numbers
and duration, leading to a stair step effect.

1 Connect the logic analyzer, emulation module, and
oscilloscope to the demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

Flat
Stair-step
distortion

distortion
52

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Also, connect the channel 1 oscilloscope probe to the D/A test
point on the demo board. And, connect the ground clip to the
GND test point.

NOTE: Make sure the pattern generator data pods are not connected to the
demo board; otherwise, the changes in demo program execution will
affect the results of the measurements that follow.
 53

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
2 Load the configuration files for this demo.

You will be loading the above configuration that will allow you
to make a time-correlated measurement involving the
oscilloscope and logic analysis modules. The oscilloscope
module is configured to arm the logic analysis module when it
triggers. The logic analysis module, in turn, is configured to
trigger immediately when it is armed. This results in the two
traces occurring at the same time and allows them to be time-
correlated.

In the main logic analysis system window, click the File
Manager button.

In the File Manager dialog, select the D_to_A.___ configuration
file from the /hplogic/demo/860_demo_board/configs/hp1660x
directory, and click the Load... button.

MPC860 BUS
Analyzer

860
Microprocessor

Bus Signals

Listing <1>

MPC860 Listing

D/A Output

Oscilloscope Setup Display

Oscilloscope
Display

Captured State Data

Analog Trace DataD/A
Converter

Trigger
Immediate

Arm Signal
54

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
In the Load Configuration dialog, click Load.

If a confirmation dialog appears, click Yes.

(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)

3 Make sure the MPC860 demo board processor is running
in a known state.

Click the “Reset”, “Break”, and “Run” buttons in order.

Resetting the processor starts it from a known state. Breaking
puts the processor into the background monitor and allows the
emulation module to read the microprocessor’s configuration
registers (whose contents enable breakpoints among other
things).
 55

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
4 Start the oscilloscope measurement.

Select “Trigger…” on the bottom of the oscilloscope display.
Notice that the oscilloscope has been set up to trigger on an
edge.

Click the “Group Run” button to take a trace and view the
triangular waveforms. You should see the “flat distortion”
defect, but you may not see the “stair step” distortion because
it is very intermittent.

Click “Group Run” to view the captured waveforms a few more
times. You see that the triangular waveform goes through
various forms, from mildly distorted to heavily distorted. Notice
that the heavily distorted triangular waveforms are infrequent.

5 Modify the oscilloscope trigger.

Now, set up the oscilloscope to trigger on a heavily distorted
waveform. Go to the “Trigger Setup – 2 Gsa/s Scope” dialog by
selecting “Trigger…”; then, select the “Pattern” radio button.
56

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
The pattern trigger has already been setup for a waveform that
stays above 800 mV for more than 1.2 msec.

Click “Group Run” to capture one of the heavily distorted
waveforms. (It may take several seconds because the
waveforms are so infrequent.)

If the oscilloscope does not trigger, it may be because of
variations in the demo boards. Shorten the period of the
pattern trigger to capture a less distorted version of the
waveform.

Close the trigger dialog to get it out of the way
 57

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
6 Open the Listing and Source Viewer displays.

Click the “Navigate” button, select the “MPC860 BUS >” option,
and select “Listing<1>...”.

Click the “Navigate” button again, select the “MPC860 BUS >”
option, and select “Source Viewer<1>...”.

Move the Listing<1> window to the lower right hand corner of
the screen and the Source Viewer window to the upper left
hand corner of the screen to get them out of the way.

7 Use global markers to correlate the captured data.

Now, mark off the 350 microsecond (approximately) flat
distortion with the global markers. Right click on the
oscilloscope trace and select “Place marker >” and select “G1”.
Don’t worry about getting the marker in exactly the right place
at first, because they can be dragged into place after they
appear. Place the G1 marker just past the end of the 350
microsecond (approximately) stretch in the “triangular”
waveform. Place the G2 marker just before the beginning of the
stretch.

*OREDO�0DUNHUV

7KH�ORJLF�DQDO\VLV�V\VWHP�SURYLGHV�WLPLQJ�PDUNHUV�WKDW�VSDQ�DQ\�PRGXOHV�WKDW�KDYH�
EHHQ�FRUUHODWHG��3ODFLQJ�D�PDUNHU�LQ�WKH�GLVSOD\�RI�RQH�PRGXOH�SRVLWLRQV�DQ�LGHQWLFDO�
PDUNHU�DW�WKH�FRUUHFW�WLPH�SRVLWLRQ�LQ�DOO�FRUUHODWHG�PRGXOH�GLVSOD\V�
58

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Note that the inverse assembled listing has now moved to the
location of the code that was executed at the G2 marker.

Bring the Source Viewer to the front and then bring the
processor trace listing to the front. As you scroll through the
processor trace listing, watch the Source Viewer. You see the
source code move from running D/A code at the G2 marker to
 59

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
servicing CAN interrupts. It will pass through the CAN service
routine twice. You may have to back up a bit to get into the
section of code that writes to the D/A controller. This is
because it is difficult to place the marker precisely at the
beginning of the flat stretch.

When you go past the G1 marker, you see the code go from the
CAN service routine back to the main loop, which updates the
D/A. You may also see the IRQ3 service routine execute while
you are scrolling.

Summary You can see that the CAN interrupt postpones the updating of
the D/A voltage for over 350 microseconds. If the D/A update
was considered more important than the CAN controller, you
could modify the code to give priority to the D/A controller.

You can go through the same procedure to identify the cause of
the smaller stair step distortions in the D/A output signal. By
placing the G1 marker at the end of one of the stair steps,
placing the G2 marker at the beginning, and scrolling through
the listing, you can see that IRQ3 servicing is responsible for
stair step effect.

See Also “Controlling and modifying processor execution” on page 71.
There you will turn off interrupts and observe the effect on the
D/A waveform.
60

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Tracking software problems to their
hardware causes

When software execution behaves in a way that doesn’t seem
logically possible, you may have to look beyond the logical
(digital) behavior of the system to the physical behavior, for
example, by looking at the analog parameters of signals. If you
can capture a software execution problem with the logic
analyzer, you can also capture oscilloscope data from the target
system at the same time, and you can correlate the captured
data using global markers.

For example, in the MPC860 demo board’s program code there
are instructions that should never execute. However, if you set
up the logic analyzer to trigger on them, you’ll find that they do
execute. You can set up a correlated measurement to capture
data with the oscilloscope at the same time, and you can use
global markers to correlate the captured data and discover the
hardware cause of the problem.

1 Connect the logic analyzer, emulation module, and
oscilloscope to the demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

Connect the channel 1 oscilloscope probe to the “D0 BOUNCE”
test point on the demo board, and connect its ground clip to the
GND test point.

Connect the channel 2 oscilloscope probe to the “LATCH” test
point on the demo board, and connect its ground clip to the
GND test point.
 61

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
NOTE: Make sure the pattern generator data pods are not connected to the
demo board; otherwise, the changes in demo program execution will
affect the results of the measurements that follow.

2 Load the configuration files for this demo.

You are loading the above configuration. The logic analyzer
arms the oscilloscope which then triggers immediately. This

MPC860 BUS
Analyzer

860
Microprocessor

Bus Signals

Listing <1>

MPC860 Listing

D0 BOUNCE
Oscilloscope Setup/Display

Oscilloscope
Display

Captured State Data

Analog Trace Data

Trigger
Immediate

Latch

LATCH

Arm Signal

D0
D1
D2
D3
D4
D5
D6
D7

CLK

860
Data Bus

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
62

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
allows the oscilloscope to capture what is happening on the D0
and LATCH lines at the time of the event the logic analyzer
triggers on.

In the main logic analysis system window, click the File
Manager button.

In the File Manager dialog, select the Register.___ configuration
file from the /hplogic/demo/860_demo_board/configs/hp1660x
directory, and click the Load... button.

In the Load Configuration dialog, click Load.

If a confirmation dialog appears, click Yes.

(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)

3 Make sure the MPC860 demo board processor is running
in a known state.

Click the “Reset”, “Break”, and “Run” buttons in order.

Resetting the processor starts it from a known state. Breaking
puts the processor into the background monitor and allows the
emulation module to read the microprocessor’s configuration
registers (whose contents enable breakpoints among other
things).
 63

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
4 Set up to trigger on the software execution problem.

First take a look at the code where the problem is happening.
Go the Source Viewer, select the “Browse Source” tab, select
“File Selection...”, and select the file /hplogic/demo/
860_demo_board/source/proc_spec.c.

Scroll down to line 195. What you see is three lines that write
0x00, 0x7f, and 0x00 into a register. When the register is read
after these writes, it should contain 0x00. The next line of code
checks to see if 0x00 is in the register and goes to a NOP on line
209 if it is not. The code should never get to the NOP if the
value in the register is 0x00 like it should be.

We can check to see if the microprocessor executes the NOP by
setting the logic analyzer to trigger on it. Select line 209 and
click on it. Select “Trace about this line” from the options.
64

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
5 Click one of the “Group Run” buttons to start the
measurement.

6 Display the captured data.

After the trace has been taken, go to the microprocessor bus
listing. Try scrolling the listing up and down. The source code
highlight tracks the listing.

If the trigger is not in the center of the listing, right click on the
listing, select “Goto Marker >”, and select “Trigger”. This places
the trigger point in the center of the listing.

Notice the logic analyzer triggered on the NOP; this means the
register did not contain 0x00. The question now is why.

7 Open the oscilloscope display.

Click one of the “Navigate” buttons. Select the “2 Gsa/s Scope”
option and select “Setup/Display...”. The yellow channel 1 trace
 65

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
is the register’s D0 line and the green channel 2 trace is the
register’s clock line.

The oscilloscope has been set to trigger immediately when the
logic analyzer triggers, so the trace you see is correlated to the
microprocessor bus listing. The oscilloscope is set up to check
the waveform of the D0 line when it is latched.

You can see, with the help of the timing marker and voltage
marker, that the D0 line is at a logic 1 voltage level when data is
latched into the register by the rising edge of the clock.
66

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
8 Use global markers to correlate data.

You can establish what code was executing when this happened
by using the global timing markers.

Right click on the oscilloscope display, select “Place Marker >”,
and select “G1”. Drag the G1 marker to the rising edge of the
clock signal.

Now, go to the Listing<1> window and right-click in the black
listing box. Select Goto Marker and G1. This will center the
listing on the G1 marker.

Notice that this corresponds to the last of the three writes to
the register. This means that a 0x00 did not get written into the
register as it should have.

It is also worth noting that the three writes consisted of 0x00,
0x7F, and 0x00. This means that the MSB, which is D0 in this
system, never should have transitioned from a logic 0 during
any of the writes. Yet the oscilloscope trace shows a logic 1
right at the rising edge of the latch.

You can also explore this phenomenon further by going up to
line 182 in the source code. Here you will find three writes that
 67

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
consist of 0x00, 0x01, and 0x00. If you set the trigger to the
NOP after these writes and run the analyzer, you will find that it
will not trigger.

So, what does this mean? When we only transition a single bit,
as in the one set of writes, the correct value is latched by the
register. When we transition most of the bits, as in the other set
of writes, the wrong value gets latched by the register. A likely
cause is ground bounce that gets severe enough to cause
problems when most of the bits transition. Let’s investigate
further.

9 Probe the register’s ground, and re-run the measurement.

You can verify that ground bounce is the problem by connecting
the channel 1 oscilloscope probe to the GND BOUNCE test
point. This test point connects directly to the ground
connection of the register.

Click “Group Run” to take a trace of the ground line and
observe the ground bounce.
68

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Correlated Hardware/Software Traces
Use the oscilloscope’s voltage markers to assess the severity of
the ground bounce.

Summary By looking at the analog values of a signal as well as the digital
values and by correlating the captured data, you can see how
software symptoms might be caused by a hardware problem.
 69

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
Looking at Firmware Driver Issues

Being able to start and stop program execution, set up logic
analyzer triggers at locations in source code, and modify
processor register and memory contents helps you develop and
debug firmware drivers faster.

• By controlling the target system microprocessor’s execution (run,
stop, step, breakpoints), you can stop program execution at
certain points and examine the state of your system.

• By using an HP emulation module, you can download code to
target system RAM and execute it.
70

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
Controlling and modifying processor
execution

If your HP 16600A-series logic analysis system has an
emulation module connected to a target system
microprocessor’s debug port, you can use the emulation
module to start and stop the processor, and set breakpoints.

Normally you would use a Target Interface Module (TIM) to
connect to the processor’s debug port. In the case of the
MPC860 demo board, however, the TIM is built in. Therefore, it
has an emulation module connector right on the board, and
you’re able to control the MPC860 microprocessor execution
using the emulation module.

The MPC860 demo board’s D/A converter has a triangular
waveform output signal with distortion caused by interrupts. In
this demo, you will stop microprocessor execution, modify a
microprocessor register to disable interrupts, continue
microprocessor execution, and observe the effects on the
triangular waveform.
 71

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
The configuration you will load for this exercise arms the
emulation (run control) module from the logic analyzer. This
means that whatever the logic analyzer triggers on will cause a
break in the processor’s execution very close to that point. It is
also important to note that the oscilloscope runs completely
independently of any of the other instruments.

1 Connect the logic analyzer, emulation module, and
oscilloscope to the demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

Connect the channel 1 oscilloscope probe to the “D/A” test
point on the demo board, and connect its ground clip to the
GND test point.

MPC860 BUS
Analyzer

860
Microprocessor

Bus Signals

Listing <1>

MPC860 Listing

D/A Output

Oscilloscope Setup/Display

Oscilloscope
Display

Captured State Data

Analog Trace DataD/A
Converter

Run Control

Arm Signal

Break Immediately
72

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
NOTE: Make sure the pattern generator data pods are not connected to the
demo board; otherwise, the changes in demo program execution will
affect the results of the measurements that follow.

2 Load the configuration files for this demo.

In the main logic analysis system window, click the File
Manager button.

In the File Manager dialog, select the Turn_off_IRQ.___
configuration file from the /hplogic/demo/860_demo_board/
configs/hp1660x directory, and click the Load... button.

In the Load Configuration dialog, click Load.

If a confirmation dialog appears, click Yes.

(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)

The configuration file sets up the emulation module to stop
microprocessor execution when the logic analyzer triggers.

3 Make sure the MPC860 demo board processor is running
in a known state.

Click the “Reset”, “Break”, and “Run” buttons in order.

Resetting the processor starts it from a known state. Breaking
puts the processor into the background monitor and allows the
 73

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
emulation module to read the microprocessor’s configuration
registers (whose contents enable breakpoints among other
things).

4 Display the triangular waveform’s distortion.

In the first step of this measurement, you look at the analog
triangular waveform generated by the D/A and processor.

To see that the form of the distortion varies over time, the
oscilloscope is set up to run and trigger repetitively. In the “2G
Sa/s Oscilloscope – Display” dialog, click the “Run(r)” button.

Let the oscilloscope trace the D/A repetitively for a while. You
will see that you cannot get a true triangular waveform trace.
Stop the oscilloscope trace, right-click the “Run(r)” button, and
select “Single”.

5 Look at the source code generating the triangular
waveform.

Open the Source Viewer window by selecting Navigate,
MPC860 BUS, and SourceViewer<1>.

In the Source Viewer dialog select the “Browse Source” tab and
select “File Selection...”. Select the file /hplogic/demo/
860_demo_board/source/proc_spec.c file. Go to line 88, this is
the line where IRQ3 gets enabled on each pass through the
74

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
proc_specific loop. IRQ3 is disabled towards the end of the
proc_specific loop.

It is worth noting that IRQ2, the CAN interrupt and cause of the
flat stretch, is only turned on during the demo board
initialization. If it gets turned off, it stays off.

Now, go to lines 154 through 166 where you see the triangular
waveform generation code.

If you would like more detailed information about what the
Proc_specific loop does, go to “Demo Board Firmware” on
page 127.

6 Stop processor execution just after IRQ3 is enabled (and
before the triangular generation code is executed).

In the “Source Viewer” window, click on line 89 and select
“Trace about this line”. Click one of the “Group Run” buttons to
start the analyzer trace.

You get a status message that says there has been an
“Intermodule trigger break”. This message, and the status line
at the bottom of the “Run Control” dialog, inform you that the
processor has stopped executing demo board firmware and is
in the background monitor.
 75

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
Click “Stop” to stop the trace measurement. (When processor
execution stops, there are no states for the analyzer to capture
and fill trace memory with, so the measurement does not
complete).

You can verify where you are by looking at the processor trace
in the “Listing<1>” dialog and at the correlated source in the
Source Viewer window. Remember that the trigger must be
centered in the listing display.

7 Modify the SIMASK register to turn off interrupts.

Click a “Navigate” button, select “Emulator<1>”, and select
“Registers...”. This dialog shows you selected registers of the
processor and their values. The Registers dialog has been
preconfigured to show only the SIU group.

Turn off interrupts by going to the SIMASK register, entering all
0’s, and then moving the cursor out of the SIMASK text window.
76

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
(Moving the cursor out of the text window causes the register
change to take effect.)

8 Start the oscilloscope measurement.

Make sure the oscilloscope is not set to run repetitively.

Click the green “Run” button on the oscilloscope.

The oscilloscope will not trigger until the processor is running
because the D/A waveform will not be generated until then.

Also, note that the oscilloscope is not part of the group run
associated with the analyzer. It is an independent instrument.

9 Continue processor execution.

In the Run Control dialog, click the Run button.
 77

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
The oscilloscope should trigger almost immediately. What you
get on the display is a “perfect” triangular waveform.

From this exercise, you can see that the defects in the
triangular waveform were caused by interrupt service routines
executing during the generation of the waveform.

10 Modify the SIMASK register to turn interrupts back on.

As the processor continues to run, IRQ3 will be turned back on
again by code in the Proc_specific loop; however, the CAN bus
interrupt will not. You can verify this by running the
oscilloscope trace repetitively. You will not see the CAN bus flat
distortion, but you will see the IRQ3 stair step effect.

You can turn IRQ2 on again, along with other interrupts. Stop
the processor in the proc_specific function by selecting one of
the group runs. Now, go to the “Registers – Emulator 1” dialog,
select the SIMASK text window, enter a 2a000000, and then
move the cursor out of the SIMASK text window. Run the
processor by clicking “Run” in the Run Control dialog.

Click the green Run button in the oscilloscope again to trace
the triangular waveform repetitively and view the effect of the
register change on the waveform.
78

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
Summary Controlling the target system microprocessor’s execution (run, stop,
step, breakpoints) lets you stop program execution at certain points
and examine or modify the state of your system.
 79

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
Downloading code to RAM or Flash ROM

If your HP 16600A-series logic analysis system has an
emulation module connected to a target system
microprocessor’s debug port, you can use the emulation
module to download code to RAM or Flash ROM. Once code has
been downloaded, you can use the emulation module to start
the processor executing that code.

It is easy to quickly try out new or modified pieces of code on
the target using the following procedure. Boot the processor
and let the code in ROM initialize the system. Using the
emulation module, break the processor, download the code,
and change the PC to the start address of the code in RAM. Run
the processor to execute the new code

For example, there is code located on the analysis system that
you can download into RAM and start executing. The code will
modify the message displayed on the LCD so that you will know
it is running.

1 Connect the logic analyzer and emulation module to the
demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

2 Load the configuration files for this demo.

In the main logic analysis system window, click the File
Manager button.
80

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
In the File Manager dialog, select the Download.___
configuration file from the /hplogic/demo/860_demo_board/
configs/hp1660x directory, and click the Load... button.

In the Load Configuration dialog, click Load.

If a confirmation dialog appears, click Yes.

(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)

3 Set up the microprocessor for downloading code.

Reset, break, and run the processor, and wait until the LED
stops flashing green. This ensures that the microprocessor has
properly initialized.

Then, break the processor so it is not running when the
download happens.

4 Load the executable file into RAM.

Select Navigate, then Emulator<1>, then “Load Executable...”.

Note that, in addition to downloading code into RAM, you can
download code into Flash ROM or erase Flash ROM. Go ahead
and explore these options if you would like. Note that the four
main Flash algorithms are supported. Very few Flash ROMs do
not support one of these algorithms. Before you continue be
sure you return the “Operation” selection at the top of the
dialog to “Load Executable”.

The file you are about to load is in Motorola S-record form, so it
will automatically be loaded into the correct memory location.
Note also that “Set PC after load” is selected. This means that
when you hit run after the code is downloaded, execution will
start at the beginning of the downloaded program. Select the
“Browse...” button at the bottom of the dialog and select the file
/hplogic/demo/860_demo_board/download/demo.srec. Select
OK in the file browser dialog; then, select Apply and the file will
be loaded. Click OK in the Load Completed dialog, and close
the Load Executable window.

Now, look at the LCD display and you will see something like:
 81

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Firmware Driver Issues
ECS Status: COOL
Current Temp ##

5 Run the downloaded code.

Select Run on the Emulation dialog and note that the LCD
display now says:

Running \

This comes from the code you just downloaded and verifies that
it is executing.

6 Trace the code executing out of RAM.

You can now trace the code executing out of RAM. Click the
green Run button in the Listing dialog. You will get a trace of
the code executing in the demo board’s RAM as well as a
correlation to its source code.

Summary By using an HP emulation module, you can download code to
target system RAM and execute it.
82

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
Looking at Software Issues

Being able to make system performance measurements helps
you analyze and validate application software.

• By using the HP B4600B system performance analysis (SPA) tool
set, you can identify and characterize your target system’s
performance.

• By using the context store feature, you can easily find the code
that is responsible for corrupting a variable.

• By using the cache-on execution tracking inverse assembler, you
can trace MPC860 processor execution when caches are turned
on.
 83

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
Analyzing system performance

You can quickly find the cause of performance problems in a
section of code by using the HP B4600B system performance
analysis tool set (also known as the SPA tool set).

This demo uses the SPA tool set to identify an occasional
performance problem with a section of code executing on the
MPC860 demo board. The SPA tool set is also used to identify
the cause of the problem.

1 Probe the MPC860 demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

2 Load the configuration files for this demo.

MPC860 BUS
Analyzer

Performance
Analysis <2>

Interrupts
CAN Analyzer

Proc-specific
loop timing

IRQ3

IRQ2

860
Microprocessor

IRQ2

Bus Signals
Captured State Data

Captured Timing Data

Arm Signal

Trigger
Immediate

Performance
Analysis <1>

Performance
Analysis <3>

IRQ3
84

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
You are loading the above configuration. The logic analyzer has
been split into two virtual analyzers: one state to trace the
MPC860 bus, and one timing to trace the IRQs. The outputs of
both analyzers go to performance analysis tools.

In the main logic analysis system window, click the File
Manager button.

In the File Manager dialog, select the SPA.___ configuration file
from the /hplogic/demo/860_demo_board/configs/hp1660x
directory, and click the Load... button.

In the Load Configuration dialog, click Load.

If a confirmation dialog appears, click Yes.

(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)

3 Make sure the MPC860 demo board processor is running
in a known state.

Click the “Reset”, “Break”, and “Run” buttons in order.

Resetting the processor starts it from a known state. Breaking
puts the processor into the background monitor and allows the
emulation module to read the microprocessor’s configuration
registers (whose contents enable breakpoints among other
things).
 85

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
4 Review the source code.

Normally, for a measurement like this, you would be looking at
code that you wrote. Since this is not the case, first load the
code into the Source Viewer to review it.

Select the “Browse Source” tab, then select “File Selection...”,
highlight the file /hplogic/demo/860_demo_board/source/
proc_spec.c, and select “OK”.

Go to line number 68 where proc_specific begins. On line 76
you see a write to the variable ME_proc_specific. This write is
used to mark the beginning of proc_specific.

Go to line 275 and you see our end of loop marker,
MX_proc_specific. You could have also found this line by using
the “Text Search” tab.

NOTE: Close the Source Viewer now as its search for source lines may
interfere with the following measurements.

By using the logic analyzer to capture and store only writes to
these two variables, you can observe the duration of the
proc_specific loop over a large number of executions.

5 Set up the proc_specific performance measurement.

The processor trace has been set up to acquire writes to the
range of marker variables.
86

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
We have set up the system performance analysis tool to
calculate the time duration between the pair of writes and to
put them in buckets that are 1 millisecond in duration. This will
tell us how much variation in the execution time of the
proc_specific loop there is.

Open the first performance analyzer by selecting Navigate,
MPC860 BUS, and Performance Analysis<2>. Move the dialog
to the lower right-hand corner of the screen. Close the Listing
window (if visible) to get it out of the way.

You can see the time buckets down the far left side of the chart
in the black area of the dialog. The tool shows what percentage
of the marker pairs that were acquired has a duration that falls
into each bucket.

6 Run the measurement.

Take a trace to see where the execution times fall. Click the
green “Run” button. It will take about 50 seconds to get data in
the chart. Most of this time is spent collecting the writes to the
marker variables.

NOTE: DO NOT CLICK THE “STOP” BUTTON. If you already have, then take
the trace again by clicking the green “Run” button.

7 Display the captured microprocessor bus data.

Look at the chart in the “Performance Analysis” dialog. You will
see that most of the time intervals, about 90%, fall in the range
 87

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
of 4.5 ms to 5.5 ms. About 4% fall into the 7.5 ms to 8.5 ms
range.

It is this last group of time duration that we will focus on. They
represent a performance degradation of the proc_specific loop
of 50%. We would like to know what is causing the degradation.

The proc_specific loop does not have a lot of different branches
that it can execute. It basically executes the same code the
same way for every loop. So we suspect that interrupts may be
causing the degradation. For a complex system with a lot of
interrupts, it might not be easy to determine which interrupt or
interrupts were causing the problem. The demo board only has
two interrupts active, not counting the interrupt initiated by
the button next to the reset button. We will simulate locating
this problem with these two interrupts.

8 Display the captured interrupt data.

Click the “Navigate” button, select Interrupts >, and select
“Performance Analysis<1>...”. This dialog contains a
performance analysis of the number of occurrences of IRQ3
over a period of about 1.5 seconds. The X axis of the chart is
time, which spans from about 0 sec to about 1.5 sec. This time
span has been divided up into 104 buckets and the number of
IRQ3s that occurred during that time period (bucket) have
88

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
been counted. As you can see IRQ3s sometimes occur very
frequently and sometimes very infrequently.

Go to navigate and get Performance Analysis<3>, which
contains IRQ2 hits. You can see that IRQ2 is fairly consistent in
the number of hits per time bucket.

9 Use global markers to correlate the captured data.

To determine which IRQ is causing the problem, go to the
Performance Analysis<2> dialog, proc_specific data, and right-
click on the 7.5 ms to 8.5 ms bar and select “View event
times...”. The dialog that pops up contains all the event times
that were collected in that bucket.
 89

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
Right-click on the first event times, select “Send start time to
marker>”, and select “G1”. Look in the dialog that contains the
IRQ3 data, Performance Analysis<1>.

You will see that the G1 global marker is right at one, probably
the first, of the hit spikes in the IRQ3 data.

If you do the same with the rest of the event times that happen
before 1.5 sec, you will see that the G1 marker lands right at
one of the spikes in the number of hits. This tells us that it is
likely that the performance degradation of proc_specific is due
to the occasional large frequency of IRQ3s.

Summary You have just seen how the performance analysis tool can be
used to both identify a problem and find the cause.
90

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
Using context store

HP state analyzers let you store only certain captured states in
trace memory. You use storage qualifiers to do this. For
example, if you’re only interested in the values of a particular
variable, you can specify that only writes to that variable are
stored.

When tracing a variable’s values, you may notice a point where
the variable becomes corrupted, and you want to know what
code is responsible for the corruption. In this case, you want to
view the context in which the bad variable write occurs. In
other words, you want to view the execution before and after
the bad variable write so you can determine the code
responsible for it. HP 1660xA state analyzers have a context

store feature that lets you do just that.

This exercise begins with storing writes to a variable called
target_temp. It becomes necessary to get source correlation to
see what code is executing when a problem happens. It is not
possible to get source correlation without some inverse
assembly in the trace and there is none in this trace. By turning
on context store, enough bus cycles are captured to get inverse
assembly and source correlation.
 91

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
This measurement is setup so that a listing of the trace is
generated and a chart, or graphical representation of the trace,
is generated. The trace data is filtered before it is charted.

1 Probe the MPC860 demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

2 Load the configuration files for this demo.

In the main logic analysis system window, click the File
Manager button.

In the File Manager dialog, select the Context.___ configuration
file from the /hplogic/demo/860_demo_board/configs/hp1660x
directory, and click the Load... button.

In the Load Configuration dialog, click Load.

MPC860 BUS
Analyzer Listing <1>

Chart <1>

Only passes
variable

target_temp

Listing ot
target_temp

writes

Chart of
the value of
target_temp

860
Microprocessor

Bus Signals
Captured State Data

Filter <1>
92

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
If a confirmation dialog appears, click Yes.

(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)

3 Make sure the MPC860 demo board processor is running
in a known state.

Click the “Reset”, “Break”, and “Run” buttons in order.

Resetting the processor starts it from a known state. Breaking
puts the processor into the background monitor and allows the
emulation module to read the microprocessor’s configuration
registers (whose contents enable breakpoints among other
things).

4 Run the measurement.

Click the green Run button in the Listing<1> dialog. The trace
will take about 15 seconds because we are only capturing
writes to the target_temp variable. We are capturing 1000 of
them and they only occur on average every 14 milliseconds.
 93

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
5 Display the captured data.

Target_temp should ramp up and down consistently over and
over again, but it does not. This can be seen with the chart tool.
Select Navigate, MPC860 BUS, and Chart<1>.

As you can see, the value of target_temp does not gracefully
rise and fall as it was programmed to do.

6 Turn on context store.

It would be useful to see what code was executing when one of
the target_temp discontinuities occurs. To do this, more cycles
of the bus trace must be captured around the writes to
target_temp. Turning on context store will accomplish this.

Select Navigate, MPC860 BUS, Setup, and the trigger tab of
setup. Select the Off next to “Context Store,” and select 16
states from the pull-down.

7 Run the measurement again, and view the captured data.

Lower the setup dialog and click the green Run button. Again
the trace will take several seconds to happen.
94

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
It will be necessary to rescale the chart dialog. Right-click in the
middle of the black part of the chart dialog and select Full
scale.

Now, zoom in on one of the discontinuities. Left-click just to the
left of the discontinuity and drag to the right of it. A rectangle
will form around the area that will be zoomed to. If you do not
get the zoom you want, you can left-click and undo the scaling.

Zoom in again so that you can see the individual points
representing individual target_temp writes.
 95

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
8 Use a global marker to locate a bad variable value.

Now place a global timing marker on one of the discontinuities.
Left-click, select Place marker >, and select G1. Drag the
marker so that it is directly on the discontinuity.

In the Listing window, scroll up from this point and look at the
yellow writes, which are writes to target_temp; they will be
incrementing or decrementing. Go back to the marker and you
will see that the write is not in sequence with the writes you
just looked at.

To understand what is happening, you need to look at the
source code. But first scroll back to one of the writes that is in
sequence.
96

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
9 Open the Source Viewer window.

Select Navigate, MPC860 BUS, and Source Viewer <1>. You will
be close to line 120 of the update_sys.c source. This is where
the writes to target_temp were coded to happen.

What you will see is an incrementing or decrementing of
*temperature. *temperature is a parameter to the function
get_targets. The argument use for this parameter when
get_targets was called was target_temp. So when *temperature
is incremented or decremented, it is target_temp where the
new value is stored.

Notice also that the writes are happening exclusively in the
function get_targets. You can establish this by looking at the
address symbols in the PC column.

Now, in the Listing window, scroll down to the discontinuity.
The Source Viewer jumps to line 300 of the code. You are now
 97

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
in the function save_pointers, which should never write to
target_temp.

What is happening here is the pointer curr_loc has written past
the end of the array that was set up to store the old
temperatures. This caused it to write to the variable
target_temp, something that should only have happened in
get_targets.

Summary The context store feature lets you easily find the code that is
responsible for corrupting a variable.
98

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
Tracking processor execution with caches
turned on

The MPC860 analysis probe provides a special execution trace
inverse assembler that identifies branch trace messages
generated by the MPC860 processor. This allows the Source
Viewer to track source code even when the processor is
executing out of cache memory.

For example, some of the MPC860 demo board’s code is set up
to execute out of cache memory. You can capture this
execution, display it using the two kinds of inverse assemblers,
and compare the Listing and Source Viewer displays.

1 Probe the MPC860 demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

2 Load the configuration files for this demo.

In the main logic analysis system window, click the File
Manager button.

In the File Manager dialog, select the Cache_off.___
configuration file from the /hplogic/demo/860_demo_board/
configs/hp1660x directory, and click the Load... button.

In the Load Configuration dialog, click Load.

If a confirmation dialog appears, click Yes.

(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)
 99

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
3 Make sure the MPC860 demo board processor is running
in a known state.

Click the “Reset”, “Break”, and “Run” buttons in order.

Resetting the processor starts it from a known state. Breaking
puts the processor into the background monitor and allows the
emulation module to read the microprocessor’s configuration
registers (whose contents enable breakpoints among other
things).

4 With the standard inverse assembler, look at executed
code with caches turned on.

To set the analyzer trigger, go to the source viewer, select the
“Browse Source” tab, select “File Selection...”, and select the
file /hplogic/demo/860_demo_board/source/proc_spec.c. Scroll
down to line 212. This is the beginning of the code that
executes with cache on.
100

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
Set the analyzer to trigger about line 224, the NOP, and run the
analyzer.

5 Display the captured data

When the trace has been taken, go to the “Listing<1>” dialog,
and then go to the trigger point in the listing. You will see the
assembly code being executed that turns off the cache. After
that, things get strange. You will see the assembly code again
because it was fetched into cache, and very shortly after that
you will only see reads and writes to the D/A converter. Once
the cache is turned on, following the code on the bus does not
work very well.
 101

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
Note also that the Source Viewer is unable to track the source
code through this part of the inverse assembly.

6 Load the configuration files that use the execution trace
inverse assembler.

Now load the configuration file “/hplogic/demo/
860_demo_board/configs/Cache_on.___.

This configuration is set up to use the execution trace inverse
assembler.

The execution trace inverse assembler uses the MPC860’s
branch trace messaging feature to follow processor execution
when the caches are turned on.

7 With the execution trace inverse assembler, look at
executed code with caching turned on.

Go to the source viewer, select the “Browse Source” tab, select
“File Selection...”, and load the source file /hplogic/demo/
860_demo_board/source/proc_spec.c.
102

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
Go to line 224 and set the trigger again.

Click the green Run button to perform the measurement; then,
go to the “Listing<1>” dialog.

You will now see the branch trace messages.

In the Source Viewer, you will be able to follow what source
code was executed during this trace.

In this example, the section of code that executes out of cache
is very short, but it demonstrates how source code could be
tracked through a long section of code executing out of cache.

Summary The execution trace inverse assembler makes it possible for the
logic analysis system to provide source code correlation even
when the processor is executing out of cache memory.
 103

Chapter 3: Quickly Find the Cause of Difficult HW/SW Interaction Problems
Looking at Software Issues
104

4

Quickly Find the Cause of
Difficult Hardware Problems
105

Chapter 4: Quickly Find the Cause of Difficult Hardware Problems
Capturing Very Deep Traces
Capturing Very Deep Traces

Being able to capture very deep traces gives you the ability to
capture widely separated causes and effects. You can also
capture a large number of repeating events to help track down
problems that might occur infrequently or to establish statistics
of the event.

• By using logic analyzers that give you deep-memory traces, and by
using the different types of filtering and display tools, you can
capture a large amount of data (perhaps of a rarely occurring
problem) and view the data in different ways without having to
recapture it.
106

Chapter 4: Quickly Find the Cause of Difficult Hardware Problems
Capturing Very Deep Traces
Using logic analyzers with deep memory

With HP’s deep-memory logic analyzer modules, you can easily
capture a trace of long duration and search it for a widely
separated problem and its root cause.

For example, with the HP 16600A state/timing logic analyzer
module and 64K states of trace memory, you can capture 10
milliseconds of MPC860 demo board (25 Mhz) execution.

By contrast, you can capture 98 microseconds of MPC860 demo
board execution with the HP 16550A state/timing logic analyzer
module and 4K states of trace memory.

1 Probe the MPC860 demo board.

Follow the instructions in the “Getting Started” chapter on
page 9 for connecting the logic analysis module to the demo
board.

NOTE: Make sure the pattern generator data pods are not connected to the
demo board; otherwise, the changes in demo program execution will
affect the results of the measurements that follow.

2 Load the configuration files for this demo.

In the main logic analysis system window, click the File
Manager button.

In the File Manager dialog, select the Deep_trace.___
configuration file from the /hplogic/demo/860_demo_board/
configs/hp1660x directory, and click the Load... button.

In the Load Configuration dialog, click Load.

If a confirmation dialog appears, click Yes.
 107

Chapter 4: Quickly Find the Cause of Difficult Hardware Problems
Capturing Very Deep Traces
(You can also choose the File, Load Configuration... command
from the menu bar of most windows.)

The Waveform<1> dialog that is brought up is set up to
produce a timing trace of the microprocessor on the demo
board. As you can see, the address and data buses are traced,
as well as various status lines on the processor.

The analyzer has been set up to trace 64K acquisitions of the 51
processor signals. As you will see, this is 1.5 msec of execution
(at a sample rate of 8 ns).

For large traces such as this, 408 Kbytes, HP uses a demand-
driven approach, which significantly speeds up the display of
that data. Other logic analyzers will get bogged down displaying
less data than is captured in this exercise.

3 Run the measurement.

Click the green Run button to take a trace.

After the acquisition has completed, try moving around in the
trace. Click on the scroll bar (because of the large trace, it is
more of a dot than a bar), and drag it to the right or left. Notice
how responsive the display is. This is a trace of bus cycles
occurring during the execution of code on the demo board.

4 Display symbols in the captured data.

Symbols for the 860 processor were loaded into the analyzer
with the configuration file you loaded. These symbols can be
used in the trace as well. Right-click on “ADDR all” and select
108

Chapter 4: Quickly Find the Cause of Difficult Hardware Problems
Capturing Very Deep Traces
“Change attributes...”. On the ShowValue line select “Hex”, pick
“Symbols” from the pull down, and select “OK”.

The symbols for address that have been defined are displayed
in the trace. To see more of the symbols, you can expand the
display by decreasing the seconds per division.

5 Use the Goto tab to quickly go to certain locations.

You also have navigation aids. Select the “Goto” tab. Here you
can quickly go to the beginning, trigger, or end of the trace.

You can also place markers in the trace and go to them quickly.

6 Use the search capability to find particular data.

To place a marker at a specific address, the search feature can
be used. We wish to find the first occurrence of an access to the
 109

Chapter 4: Quickly Find the Cause of Difficult Hardware Problems
Capturing Very Deep Traces
DAC. Select the “Search” tab, select “Advanced searching...”,
and in the dialog that comes up select “Define...”.

We want to search for a symbol, so in the Search Pattern dialog
select “Hex” and change it to “symbols”. Expand the dialog and
select “Absolute XXXXXXXX”. The dialog that comes up shows
the list of symbols read into the analyzer.

To narrow down the list deselect all of the types in the “Find
Symbols of Type” box except for the “Variable” type. Click in
110

Chapter 4: Quickly Find the Cause of Difficult Hardware Problems
Capturing Very Deep Traces
the list box and scroll down until you find the “dac” symbol.
Select it and click OK.

In the “Search Pattern” dialog, select “When Present” and
change it to “When Entering”, then select “Apply”.

The waveform display has now gone to the 0th occurrence of
the DAC address from the beginning, which is the beginning of
the trace.
 111

Chapter 4: Quickly Find the Cause of Difficult Hardware Problems
Capturing Very Deep Traces
In the “Goto Pattern” dialog, select “Next”.

The trace will center on the first occurrence of an access to the
DAC.

7 Use markers for easy return to points in the data.

Should you want to return to this position at a later time
without using the search, you can place a marker here. Right-
click within the ADDR trace where you want the marker
placed. Select “Place marker >” and select “G1”. If the marker
does not go exactly where you want, you can drag it into place.

One point is worth noting. If you compress the display, select
the up arrow next to “Second/div”, more and more of the data
acquired is being displayed. The more data displayed, the
slower the trace will scroll.

Summary By using logic analyzers that give you deep-memory traces, and
by using the different types of filtering and display tools, you
can capture a large amount of data (perhaps of a rarely
occurring problem) and view the data in different ways without
having to recapture it.
112

A

About the MPC860 Demo Board
113

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
Demo Board Hardware

Introduction

The MPC860 demo board is a Motorola MPC860 PowerPC
embedded system. It is designed for easy interface to an
HP 16600A/16700A-series logic analysis system. The features
built into the demo board were chosen to demonstrate a variety
of problems that can be solved by the logic analysis system. For
ease of use, the demo board draws power from a single, logic
analysis module pod or from an emulation module or probe.
The demo board does not need to be configured, all features
and problems are active whenever the processor is running.

In this section the following is discussed:

• how to configure the logic analysis system for use with the demo
board

• what signals are mapped to the connectors

• what features are found on the demo board

• the firmware running on the demo board

Configuring the Logic Analysis System for

the Demo Board

The easiest way to configure the analysis system for the demo
board is to run the Setup Assistant. This is described in
“Tracing Processor Code Execution with Source Code
Correlation” on page 22.

For completeness, the required configuration is described here
as well.
114

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
Labels and Format

The following labels and format are needed for inverse
assembly. It should be noted that the demo board uses an 8 bit
data bus to keep the number of analyzer pods required down to
four. To use the existing 6-pod inverse assembler, some overlap
is necessary between the DATA and STAT labels to make the 4-
pod solution work.

Clocking

Standard inverse assembler. When using the standard
inverse assembler, the state analysis clock qualifier should be
set to clock on the rising edge of the J (SYSCLK) and K equal to
zero (TA asserted), that is (J^) * (K=0).

Execution trace inverse assembler. When using the cache-
on execution trace inverse assembler, the state analysis clock
qualifier should be set to clock on the rising edge of the J
(SYSCLK), that is (J^).

Inverse Assembler Preferences

The MPC860 processor does not provide status information as
to whether it is fetching data or instructions. This information
is necessary for the proper functioning of the inverse
assembler. The user tells the inverse assembler where data and
instructions are in the Preferences display. This display can be
reached by going to the menu bar of the listing display for the
MPC860 BUS analyzer. Select Invasm and then Preferences.

/DEHO &/. 3RG�� 3RG�� 3RG�� 3RG��

$''5 ---- ---------------- ---------------- **************** ***************

'7 ---- **************** **************** ---------------- ---------------

67$7 **** ---------------* **************** ---------------- ---------------
 115

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
Standard inverse assembler. The Preference display should
look like this:

Execution trace inverse assembler. The Preference display
should look like this:

Inverse Assembler Filter

Filtering help to make the listing easier to read by suppressing
some cycles and displaying others in color.
116

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
Standard inverse assembler. The demo board only has an 8
bit data bus which results in three extra bus cycles each time a
data or instruction word is fetched. The filter can be set to
suppress these cycles. In addition, the filter can be set to
display different cycles or different areas of memory in
different colors. Set the filter display to suit your tastes, the
following is only an example.
 117

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
Execution trace inverse assembler. The following is just an
example, set the Filter display to suit your tastes:

Demo Board Connector Mapping

There are five sets of built-in connections on the demo board
for connecting various system modules.

Emulation Module Connector

This connector provides a connection to either an emulation
module or probe for run control of the processor. Normally this
would not be a direct connection. A Target Interface Module
(TIM) would be used to connect to the target’ s Background
Debugger Mode connection or JTAG connection and then to
118

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
the emulation module. However, to eliminate the need for a
TIM during demos, it has been built in.

Logic Analyzer Connectors

There are five low-density pod connections around the bottom
of the demo board and six pod connections in the three
Mictor38 connectors on the top of the demo board. The four
listed below allow the analysis module to trace the bus cycles of
the MPC860 processor.

'DWD 3RG����$''5 3RG����$''5 3RG����67$7 3RG����'$7$

�� $�� $� 9)/6� '����'DWD�%XV���06%

�� $�� $� 9)/6� '�

�� $�� $� $7� '�

�� $�� $� 9)� '�

�� $�� $� 9)� '�

�� $�� $� 9)� '�

� $�� $� &6� '�

� $�� $� &6� '����/6%��2QO\���ELWV�XVHG�

� $�� $� &6� 0(0B2(

� $�� $� &6� 0(0B:(

� $�� $�� &6� XQXVHG

� $�� $�� &6� XQXVHG

� $�� $�� %8567 XQXVHG

� $�� $�� XQXVHG XQXVHG

� $�� $�� 5�: XQXVHG

� $�����/6% $�� 76 02'&.�

&/. 6<6&/.�����0+] 7$ 76,=� 76,=�
 119

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
The following two pods are for timing traces of features on the
demo board.

'DWD 3RG����7LPLQJ�3UREH 3RG����3DWWHUQ�*HQHUDWRU�3UREH�

�� 325(6(7 3*��

�� +5(6(7 3*��

�� 65(6(7 3*��

�� ,54� 3*��

�� ,54� 3*��

�� ,54� 3*��

� ,54� 3*�

� ,54� 3*�

� &$1B5;' 3*�

� &$1B7;' 3*�

� &$1B&/. 3*�

� '�B%281&(3*�

� XQXVHG 3*�

� 67(3B817(50 3*�

� XQXVHG 3*�

� XQXVHG 3*�

&/. %281&(B/$7&+ XQXVHG

�3RG���LV�RQO\�DYDLODEOH�RQ�WKH�0LFWRU���&RQQHFWRU�
120

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
HP 16517A High-Speed Timing Connector

Pattern Generator Connectors

Oscilloscope Connections

There are six scope connections on the demo board. They are
used for probing various analog signals on the board. The

3LQ 3����+3 �����$�&RQQHFWRU

���7RS�5 '����'DWD�%XV��

� '�B'(/������QV�'HOD\HG�'�

� '�

� '�

� '�

� &6����5$0�&KLS�6HOHFW

� 0(0B:(

� 0(0B2(

� 5�:

��7RS�/

3LQ 3DWWHUQ�*HQHUDWRU���3*� 3DWWHUQ�*HQHUDWRU���3*�

� /&'B'7����06% /&'B6(/(&7

� /&'B'7� /&'B56

� /&'B'7� /&'B5�:

� /&'B'7� XQXVHG

� /&'B'7� XQXVHG

� /&'B'7� XQXVHG

� /&'B'7� XQXVHG

� /&'B'7����/6% 3*B(1
����3*�'LVDEOHG������3*�(QDEOHG
 121

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
connections are as follows:

In addition, there are two ground connections for the scope
probe ground clips.

Demo Board Features

Main Components

CPU.

• Motorola MPC860 Embedded PowerPC TM Microprocessor

• 25 MHz operation

• Programmed in 8-bit mode for minimal power consumption

Memory Map.

/DEHO 6LJQDO

'��%281&('��OLQH�RQ�ODWFK

/DWFK &ORFN�LQSXW�RI�ODWFK

*1'�%281&(*URXQG�RI�ODWFK

'�$ 2XWSXW�RI�'�$�FRQYHUWHU

67(3 ��0+]�VLJQDO�ZLWK�UHIOHFWLRQV

&$1�%86 6HULDO�RXWSXW�RI�&$1�FRQWUROOHU

&KLS�
6HOHFW 'HYLFH %DVH�$GGUHVV (QG�$GGUHVV 6L]H

&6�)ODVK�520 0xFFF00000 0xFFFFFFFF ��0E\WHV

&6� 65$0 0x00000000 0x0007FFFF ����.E\WHV

&6� /&' 0x20000000 0x20000001 ��%\WHV

&6� &$1�&RQWUROOHU 0x30000000 0x300000FF ����%\WHV

&6� 3/' 0x40000000 0x4000000F ���%\WHV

&6� '�$�&RQYHUWHU 0x50000000 0x50000000 ��%\WH

&38 &38�6SDFH 0xFF000000 0xFF003FFF ��.�%\WHV
122

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
Flash ROM.

• AMD M29F800B 1MBx8 Flash ROM

• 16 erasable sectors

• Embedded Erase/Program Algorithms

• 5 Volt Operation

• 1MB Flash ROM partitioned into protected and user blocks.

SRAM.

• Sony HM6285 512K x 8 70ns SRAM

• 512K SRAM for downloading demo code from 3rd party
debuggers.

LCD.

• 2 line, 16 character display

• Optrex DMC16249

PLD.

• Altera EPM7128SQC100-15

• In-Circuit Programmable

• Contains:

• Memory Interface

• Interrupt Controller

• Pattern generator interface controller

• Hardware control registers

Features and Problems

The firmware constantly stimulates the features that need it so
they are always ready for use.

Variable frequency interrupt subsystem. IRQ3 is
generated by this system. It produces interrupts in varying
 123

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
frequencies, with interrupts coming in a flurry, subsiding to
occurring very infrequently, and then coming in a flurry again.
This is intended to simulate the kind of interrupts that might
occur with a LAN controller. This feature deliberately interferes
with the waveform produced by the D/A converter in an
asynchronous way.

LCD display with pattern generator connections. The
LCD display provides feedback to the user and is driven by the
processor. In addition, it is connected to the pattern generator
connections through a multiplexer. When the pattern generator
is connected, it can override the processor’ s control of the
display. Vectors can be created in the pattern generator that
will write to the LCD display.

NOTE: The pattern generator by default takes control of the LCD display.
When this happens, the processor will make 2,000 attempts at writing
to the display before going to the following code. Needless to say, this
significantly slows down the execution of the code.

Latch with a ground bounce problem. The processor writes
to a latch with its ground isolated by a coil. When only a few bits
change value, all is well. However, if most of the bits change
value, the resulting ground bounce prevents the correct value
from being written to the latch.

D/A Converter. The D/A converter is a TI TLC7528, which has
100ns settling time. The firmware stimulates the D/A converter
twice each time it loops. The first time produces a triangular
waveform, the second time caching is turned on and a smaller
triangular waveform is produced. The triangular waveforms are
distorted by IRQ2 interrupts (CAN controller) and occasionally
by IRQ3 interrupts. Once in a great while the IRQ3 effect
dominates the triangular waveform.

CAN Controller. The demo board includes an Intel AS82527
CAN Bus Communications Controller. The Controller Area
Network (CAN) bus is primarily used by the automotive
industry. This controller supports CAN 2.0 protocol. The
controller provides a good example of how well the analysis
124

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
system works with external system buses. In addition, it
provides an opportunity to demonstrate the serial analysis tool.

The firmware programs the controller to send out information
from the Environmental Control System function each time it
loops. However, CAN controllers require an acknowledge from
another controller to complete a transmission. This gets
simulated by the PLD, it counts the number of bytes sent by the
CAN controller and then shuts it down. However, the controller
is able to retransmit one more time before stopping. The IRQ2
from the CAN controller get serviced by a routine that
simulates getting data from a controller that received the
message.

Pushbutton. The pushbutton on the front panel labeled
“Interrupt” generates an IRQ1. It can be used to generate an
asynchronous event that can be detected by the analysis
system.

Mictor38 probing technology. In addition to the low-density
pod connections around the bottom of the demo board, there
are three Mictor38 connectors on the top of the demo board.
HP E5346A adapters are available to provide the connections
to the analyzer pods. These connectors duplicate the low-
density connections and are there primarily to demonstrate
HP’s high-density connections. The footprint of these
connections is reduced in two ways, the connector is smaller
and no termination circuitry is required. The termination
circuitry for the low-density connectors can be seen as a
collection of surface mount resistors and capacitors next to the
connectors.
 125

Appendix A: About the MPC860 Demo Board
Demo Board Hardware
126

Appendix A: About the MPC860 Demo Board
Demo Board Firmware
Demo Board Firmware

Introduction

The firmware on the 860 demo board boots the processor and
initializes the board. It then prepares to execute a simulation of
an Environmental Control System (ECS) and to execute code
that stimulates the features and bugs built into the demo board.
Then it continuously loops through the ECS and stimulus code.

Overview of main()

The function main() is located in eps2.c. It boots the processor,
performs some initialization and then continuously loops
through updating the display and two main functions,
update_system (ECS code) and proc_specific (stimulus code).
The variable num_checks is a pass counter used by
update_system and update_display.

Functions and operations executed by main()

Initialization boot_q();
init_system();
proc_spec_init();

Continuous Loop update_system(num_checks);
num_checks++
update_display(num_checks);
proc_specific();
 127

Appendix A: About the MPC860 Demo Board
Demo Board Firmware
What the Functions do

boot_q() • Initializes/sets up demo board (processor,
PLD, etc.)

• Calls can_init(), lcd_init()

• Flashes LED and puts "HP Demo Board
c1997" on LCD

• Calls pv() ;Only leaves pv() if all is well.

• Stops LED flash and puts "ECS II Ver 1.
Initializing" on LCD

init_system() Initializes the environmental control system.
The variables are initialized within this
procedure so that the system can reboot
without being reloaded.

proc_spec_init() Clear out the problem variable

problem = 0; used to cause run-
time problems
CHECK ON THIS,
MAY NOT BE USED

main_interrupts = 0; 0 - No interrupts in
main()
Set 1 for interrupts
to occur in main

periodic_interrupts = true;

cache_on = 0; The cache is not on
in proc_specific

main_cache = 0; No effect since cache
is disabled
128

Appendix A: About the MPC860 Demo Board
Demo Board Firmware
update_system() ECS Update System Code - Modified for
Demo Board. It is the service routine that
alters the state of the entire environmental
control system. It calls several functions,
each of which have particular parts of the
system that they alter or update. The
following action is taken when this routine is
called.

1. New temperature target is read in.

2. New environment conditions are read.

3. The func_needed is modified based on the
actual state of the environment versus the
desired state to indicate what needs to
happen in the current environment.

4. func_needed is used to derive
hdwr_encode (the 16-bit quantity that
indicates what the hardware needs to do
to achieve the correct change in the
environment).

5. The environment conditions are saved for
posterity.

6. THERE IS A BUG IN THIS ROUTINE (ON
PURPOSE!!!)

update_display() Clear out the history buffer and update the
current ascii display of operating data
(ascii_old_data).

proc_specific() Proc_specific exercises all of the features and
bugs built into the demo board. There is a
detailed description of what proc_specific
does below.
 129

Appendix A: About the MPC860 Demo Board
Demo Board Firmware
Where the functions are located

Overview of proc_specific

Turn on the cache if cache_on = 1

Start up the periodic interrupts

Display ECS status on the LCD

Stimulate the Controller Area Network (CAN) Bus

The following data will be sent out the CAN bus. Each variable
is 8-bits, with an 8-bit label that precedes it in the data
transmission. With the serial analyzer, look for the 0x11, 0xaa,
0x22, 0xbb, etc. to know which variable’s data follows.

Stimulate the D/A Converter

The D/A converters output voltage is 5 volts times D/256.
Create a triangle wave by ramping up the voltage one step at a
time, then immediately ramping it down.

Stimulate the ground bounce register

The demo board has register with a ground bounce problem.
Connect the scope to the ’D0 Bounce’ and ’Latch’ Signals.

)XQFWLRQ /RFDWLRQ

PDLQ�� HFV��F

ERRWBT ERRW�F

FDQBLQLW FDQ�F

LQLWBV\VWHP LQLWBV\V�F

OFGBLQLW OFG�F

SURFBVSHFBLQLW SURFBVSHF�F

SURFBVSHFLILF SURFBVSHF�F

SY SY�F

XSGDWHBGLVSOD\ HFV��F

XSGDWHBV\VWHP XSGDWHBV\V�F
130

Appendix A: About the MPC860 Demo Board
Demo Board Firmware
Trigger the scope on the rising edge of ’latch’ with a threshold
of 1.5 volts and a sample rate of at most 5ns. Note the change in
’D0 Bounce’ when data line changes.

Run a piece of code in cache

The following instruction can be used to trigger on if running
the MPC860 execution tracker software on the logic analyzer.
Note that even if indirect only show cycles are on, the logic
analyzer can trigger.

Note that this section will be skipped if the cache is already on.

Return to normal ECS code

Before returning, check if any of the execution flags have been
set - if main_interrupts = 0, Turn off interrupt activity before
leaving function. If main_cache = 0, Turn off the cache for main.

Variables

Variables of interest

The following are some of the key variables in the demo board
firmware.

9DULDEOH 5HPDUNV 6HH�$OVR

DVFLLBROGBGDWD $6&,,�YDOXHV�RI�WHPSHUDWXUH�GDWD��,W�LV�XVHG�WR�VKRZ�WKH�
YDOXH�RI�D�GHEXJJHU�WR�PRQLWRU�FRPSOH[�&�YDULDEOHV��
+LVWRULFDOO\��
SULQWI
�ZDV�XVHG�WR�ZULWH�YDULRXV�YDOXHV�WR�D�
SRUW�RQ�D�UHJXODU�EDVLV��7KLV�LV�LQKHUHQWO\�VORZ�DQG�PD\�
UHTXLUH�WKH�XVH�RI�D�GHGLFDWHG�SRUW�RQ�WKH�WDUJHW��$�
EHWWHU�DOWHUQDWLYH�LV�WR�XVH�
VSULQWI
�WR�ZULWH�WR�5$0�DQG�
GLVSOD\�WKDW�PHPRU\�XVLQJ�D�GHEXJJHU��:KLOH�
VSULQWI
�
LQFXUV�WKH�VDPH�RYHUKHDG�DV�
SULQWI
�IRU�GDWD�FRQYHUVLRQ��
WKHUH�LV�QR�LQWHUDFWLRQ�ZLWK�WKH�RXWVLGH�ZRUOG�UHTXLUHG�

XSGDWHBGLVSOD\

FDFKHBRQ �����GHIDXOW��7KH�FDFKH�LV�RII
����7KH�FDFKH�LV�RQ�LQ�SURFBVSHF��

PDLQBFDFKH

FXUUBORF /RFDWLRQ�WR�ZULWH�ROG�WHPS��LQFUHPHQWHG�SDVW�HQG�RI�
ROGBGDWD

ROGBGDWD
 131

Appendix A: About the MPC860 Demo Board
Demo Board Firmware
Markers, special variables

The following variables are used to instrument the code. They
come in ME_ and MX_ pairs. The ME_ variable is used to mark

FXUUHQWBWHPS &XUUHQW�WHPSHUDWXUH��XVHG�E\�(&6�SURJUDP�

IXQFBQHHGHG ,W�LV�WKH�E\WH�WKDW�LQGLFDWHV�ZKDW�WKH�(&6�FRGH�QHHGV�WR�
GR�WR�WKH�HQYLURQPHQW��7KH�IROORZLQJ�VSHFLILHV�WKH�YDOXHV�
LW�PD\�KDYH�
bit bit #1 bit #0
function needed cool heat
7KH�RQO\�YDOLG�YDOXHV�IRU�WKLV�FKDU�DUH�
(hex) (binary)
(1) 0001 heat
(2) 0010 cool

KGZUBHQFRGH ,W�LV�WKH�HQFRGHG����ELW�TXDQWLW\�RXWSXW�E\�WKH�V\VWHP�
ZKLFK�LV�LQWHUSUHWHG�E\�H[WHUQDO�GHYLFHV��,W�WHOOV�WKH�
H[WHUQDO�GHYLFHV�ZKDW�WR�GR��IRU�H[DPSOH��WXUQLQJ�WKH�DLU�
FRQGLWLRQHU�RQ��LQGLFDWHG�E\�KGZUBHQFRGH� ��������
7KHUH�DUH�IRXU�VHWV�RI�IRXU�ELWV�ZLWKLQ�WKH����ELW�TXDQWLW\�
KGZUBHQFRGH��7KHVH�VHWV�RI�ELWV�DUH�HQFRGHG�DV�IROORZV�

bits 7 - 4 bits 3 - 0
Air Conditioner Heater

0 = off 0 = off
1 = on 1 = on

PDLQBFDFKH �����GHIDXOW��7KH�FDFKH�LV�RQ�LQ�SURFBVSHF����RQO\�FKHFNHG�
LI�FDFKHBRQ� ���
����7KH�FDFKH�LV�RQ�LQ�DOO�PRGXOHV

FDFKHBRQ

PDLQBLQWHUUXSWV �����GHIDXOW��1R�LQWHUUXSWV�LQ�PDLQ��
����,QWHUUXSWV�LQ�PDLQ��

0D.H%D5 0D.H%D5�6HW�WR�]HUR�WR�WXUQ�RII�DOO�0$.(%$5
V�LQ�(&6�
FRGH��ZKLFK�VSHHGV�XS�WKH�FRGH�

QXPBFKHFNV &RXQWV�WKH�QXPEHU�RI�WLPHV�XSGDWHBV\VWHP���LV�FDOOHG

ROGBGDWD +LVWRU\�RI�WHPS�GDWD��XVHG�E\�(&6�FRGH��&RGH�ZULWHV�
SDVW�WKH�HQG�RI�ROGBGDWD�LQWR�WDUJHWBWHPS��FUHDWLQJ�D�
EXJ�

FXUUBORF

RXWVLGHBWHPS 2XWVLGH�WHPSHUDWXUH��XVHG�E\�(&6�FRGH

WDUJHWBWHPS 7DUJHW�WHPSHUDWXUH��XVHG�E\�(&6�FRGH

WHPSBWDUJHW 8VHG�E\�(&6�FRGH�WR�UDPS�WDUJHWBWHPS��VSHFLILHV�OLPLWV

9DULDEOH 5HPDUNV 6HH�$OVR
132

Appendix A: About the MPC860 Demo Board
Demo Board Firmware
when a function is entered by writing a one to it as the first
instruction in the function. The end of the function is marked in
the same way except a one is written to the MX_ variable when
exiting the function. The analyzer can be set up to trace just
the addresses at which a write to the variable pairs occurs,
thereby tracing the beginning and end of the functions
instrumented. The analyzer can keep track of the time between
the writes and there can come up with a trace of how long the
software spends in each function over a long period of time.

The ME_first_marker and MX_last_marker are used to make it
easy to set a range across all the code without having to know
the exact addresses.

ME_first_marker
ME_update_system
MX_update_system
ME_update_display
MX_update_display
ME_clear_hist_buff
MX_clear_hist_buff
ME_proc_specific
MX_proc_specific
ME_do_sort
MX_do_sort
ME_get_targets
MX_get_targets
ME_read_conditions
MX_read_conditions
ME_set_outputs
MX_set_outputs
ME_write_hdwr
MX_write_hdwr
ME_save_points
MX_save_points
ME_add_to_history
MX_add_to_history
MX_last_marker
 133

Appendix A: About the MPC860 Demo Board
Demo Board Firmware
Using the PowerPC 860 Emulation Module

Do not run from reset. Break from reset; then, run. Otherwise,
the default DER register setup will not allow setting hardware
breakpoints. The copy from the emulation module’ s CF_DER
register doesn’t occur.
134

Appendix A: About the MPC860 Demo Board
Recommended Demo Configuration
Recommended Demo Configuration

Why use Recommended Demo Configuration

All of the exercises in this guide, except for the ones in the
“Quickly Set Up the Analysis System” chapter on page 13, rely
on loading configuration files that were developed on an
analysis system with a particular configuration. If the files are
loaded into a system that has a different configuration of
modules, the exercises may or may not work. This is because
different analysis modules have different trace depths and
different internal configurations. The analysis system will
attempt to load the configuration files in the best way possible,
which will allow some of the configuration to work.

What is the Recommended Demo Configuration

The recommended demo configuration is as follows:

Most exercises also require an HP 16610A emulation module in
slot 1.

Module Descriptions.

HP16600A - 100 MHz State/250 MHz Timing

HP16534A - 2 GSa/s, 2 Ch. Oscilloscope

$QDO\VLV�6\VWHP�
6ORW 0RGXOH 5HTXLUHG�IRU�

$ +3 �����$ PRVW�H[HUFLVHV

% +3 �����$ PRVW�H[HUFLVHV
 135

Appendix A: About the MPC860 Demo Board
Recommended Demo Configuration
Verifying Your Configuration

Start an analysis session and look at the HP 16600 system
window. Look at the analysis module buttons down the left side
of the window. They should be as follows:
136

B

Concepts
137

Appendix B: Concepts
Timing Analysis vs. State Analysis in Logic Analyzers
Timing Analysis vs. State Analysis in Logic
Analyzers

Timing analysis with a logic analyzer is much like tracing a
signal with a digital oscilloscope. A scope samples the signal at
a rate established by an internal clock and displays it on a
screen for viewing. A logic analyzer differs from a digital scope
in that one-bit comparators rather than eight-bit are used. This
establishes two signal levels (logic 1 or 0) rather than the
continuous range of signal levels that you get with a scope. As a
result, logic analyzer channels are much cheaper than a scope’s,
allowing many more to be put in a single instrument.

With a large number of channels, the logic analyzer can show
the timing relationship of logic between various signals in a
large variety of systems. For example you could look at the
timing relationship between the logic levels of the control lines,
address lines, and data lines of a processor. However, you may
be more interested in a sequence of states on the processor’s
bus than the timing relationship of the bus elements. This
acquisition would be best if each state were acquired only when
they were valid. In other words, synchronous with the bus
clock.

When you want to capture signals that are synchronous with
clocks or other signals in the target system, the logic analyzer
can use external clock signals for sampling data. Of course, the
clock edge you give to the logic analyzer must sample target
system data when it is valid. When an external clock is being
used for sampling, the logic analyzer is configured as a state

analyzer.
138

Glossary
A

analysis probe A special type of
probe for connecting the logic
analyzer to microprocessors or
standard busses. Analysis probes
typically include files for
configuring the logic analyzer
and labeling channels, as well as
inverse assemblers for decoding
captured bus cycles into
assembly language instructions.

arm A condition that enables an
instrument and allows it to
trigger. You can set up one
instrument to arm another using
the Intermodule window. In some
analyzer instruments, you can set
up one analyzer machine to arm
the other analyzer machine in the
Setup window’s Trigger tab.

C

channel A single probe for
capturing data on one signal.

clock inputs (labeled J, K, L,

M, etc.) The clock inputs on the
logic analyzer pods are labeled J,
K, L, M, etc. for pods 1, 2, 3, 4,
etc., respectively. We have
preserved this labeling to
maintain continuity with
previous logic analyzers.

E

emulation adapter Attaches to
an emulation module and has a
special connector for interfacing
with a microprocessor’s debug
port connector.

emulation module A module
that can be installed in the
HP 16600A-series logic analysis
system to provide the ability to
run, step, or stop microprocessor
execution, set breakpoints, and
modify the contents of
microprocessor registers and
memory locations.

emulation probe A stand-alone
emulation module and adapter
combination that can exist on the
Local Area Network (LAN) and
be used with 3rd-party
debuggers or the HP 16600A-
series logic analysis system.

L

logic analyzer An instrument
that captures digital signals.

labels Names given to logic
analyzer channels. Typically,
these names correspond to the
signals or busses they are
probing.
139

Glossary
M

machine A collection of logic
analyzer channels that can be
configured independently as a
timing analyzer or as a state
analyzer.

module An instrument that uses
a single time base in its
operation. Modules can have
from one to five cards
functioning as a single
instrument. When a module has
more than one card, they main
system window will show the
instrument icon in the slot of the
master card.

O

oscilloscope An instrument that
captures analog signals and the
analog parameters of digital
signals.

P

pod A group of logic analyzer
channels. These are the 2x20
connectors on the end of the
cables coming out of the logic
analyzer. A pod is assigned to a
virtual analyzer by dragging it to
the area below the analyzer’s
name.
140
pod pair All current HP logic
analyzer modules group their
pods into pod pairs.

processor solution A bundled
HP product that includes an
analysis probe, and emulation
module, and the source
correlation tool set.

S

sequencer A state machine in
the logic analyzer’s data
recognition and filtering circuitry
that is used to identify when data
should be captured (in other
words, when the logic analyzer
should trigger).

state analysis When data is
sampled at a rate determined by
clocks external to the logic
analyzer.

T

target system The system
under development whose digital
signals you are measuring.

timing analysis When data is
sampled at a rate determined by
the logic analyzer’s internal
clock.

Glossary
trigger The reference point in a
logic analyzer measurement.

tool set An add-on software
product for the HP 16600A-
series logic analysis system.

V

virtual analyzer Virtual
analyzers provide a way of
grouping the different signals you
collect. For the most part, you
won’t have to worry about having
two virtual analyzers, just group
all your active pods under one
analyzer and proceed to the
format tab of the setup dialog.
However, there are times when
you must use two analyzers, such
as when you want to collect both
state and timing traces.

141

Glossary
142

Index
A

analog parameters of signals, 61
analysis probe, 27, 139
analysis probes, 22, 43
arm, 139
ascii_old_data, 131

B

Background Debug Mode (BDM), 24
Background Debugger Mode, 118
BGA footprints, 23
boot_q(), 128
branch trace messages, 99
branch trace messaging, 102

C

cache_on, 131
cache-on execution trace inverse

assembler, 115
cache-on execution tracker, 99
CAN controller, 124
CAN interrupt, 75
CF_DER register, 134
channel, 139
clock inputs, 139
clocking, 115
code in cache, 131
collaborative debugging, 2
color, waveform, 19
compare, 2
concepts, 137
configuring the logic analysis system,

114
connecting the analyzer, 15
connecting the demo board, 10
connector mapping, 118
context store, 2, 91
Controller Area Network (CAN) Bus,

130
Controller Area Network (CAN) bus,

43, 124
curr_loc, 131

current_temp, 132

D

D/A converter, 52, 71, 124, 130
DATA and STAT labels, 115
debug port, 71
deep traces, 106
deep-memory logic analyzer

modules, 107
deep-memory traces, 2, 106
default configuration, 16, 27
demo board connector mapping, 118
demo board features, 122
demo board firmware, 127
demo board hardware, 114
demo guide, 4
demo kit, 4
DER register, 134
download code, 80
downloading code into RAM, 81

E

embedded microprocessor cores, 23
emulation adapter, 139
emulation module, 2, 71, 134, 139
emulation module connector, 118
emulation module, connecting demo

board, 12
emulation modules, 24
emulation probe, 139
emulation probes, 25
Environmental Control System

(ECS), 125, 127
execution trace inverse assembler,

99, 102, 115
external clock for sampling, 138

F

filter, 116
firmware drivers, 70
Flash ROM, 80, 123
flat distortion, 56
143

Index
flying lead set, 15
format, 115
func_needed, 132
function locations, 130

G

G1 marker, 20, 50
G2 marker, 21, 50
Getting Started, 9
global markers, 49, 58
glossary, 139
ground bounce, 68
ground bounce register, 130

H

hard disk, 36
hardware breakpoints, 134
hdwr_encode, 132
high-density Mictor38 connector, 23
high-density termination adapters,

23
high-speed timing connector, 121
HP 16555D logic analysis modules, 16
HP E5346A high-density termination

adapters, 23

I

init_system(), 128
insight, 2, 42
inverse assemble, 22
inverse assembler, 23
inverse assembler filter, 31, 116
inverse assembler preferences, 31,

115
inverse assembly, 115
ISA busses, 43

J

JTAG connection, 118
JTAG port, 24
144
L

labels, 139
labels and format, 115
latch with a ground bounce problem,

124
LCD, 123
LCD display with pattern generator

connections, 124
logic analyzer, 139
logic analyzer connectors, 119
logical (digital) behavior, 61
low-density pod connections, 119

M

machine, 140
main(), 127
main_cache, 132
main_interrupts, 132
MaKeBaR, 132
markers, 20
markers, special variables, 132
memory map, 122
microprocessor cores, embedded, 23
microprocessor support, 28
Mictor38 connector, 23
Mictor38 connectors, 119
Mictor38 probing technology, 125
module, 140
Motorola S-record, 81
MPC860 demo board, 113

N

networked logic analysis system, 2
num_checks, 132

O

object file, 26
old_data, 132
oscilloscope, 140
oscilloscope connections, 121
oscilloscope module, 52

Index
outside_temp, 132
overlay, 18

P

pattern generator connectors, 121
pattern generator module, 2
PCI busses, 43
PCMCIA busses, 43
PGA sockets, 23
physical behavior, 61
PLD, 123
pod, 140
pod pair, 140
post-processing filtering tools, 2
preferences, 115
proc_spec_init(), 128
proc_specific(), 129, 130
processor solution, 140
processor solution information, 26
processor solution packages, 26
processor solutions, 22
pushbutton, 125

R

recommended configuration, 10
recommended demo configurations,

135
root cause, 3

S

scope probe ground clips, 122
SCSI 1, 2, and 3 busses, 43
search capability, 109
sequencer, 140
Setup Assistant, 27
SIMASK register, 76
SIU group, 76
software issues, 83
source code location, 36
source correlation tool set, 26, 35
source line, trigger on, 46
Source Viewer, 35

SPA tool set, 84
special variables, 132
SRAM, 123
stair step distortion, 56
standard bus, 22
standard busses, 43
standard inverse assembler, 115
STAT label, 115
state analysis, 138, 140
state analyzer, 43
stimulus, 2
storage qualifiers, 91
stuffed bits, 51
surface mount package pins, 22
symbol file, 37
symbol information, 26
synchronous with the bus clock, 138
system performance analysis tool set,

84

T

Target Interface Module (TIM), 24,
71, 118

target system, 140
target_temp, 132
temp_target, 132
testing hypotheses, 2
time duration, 87
time to insight, 2
time-correlate, 2
time-correlated measurement, 54
timing analysis, 138, 140
timing analyzer, 43
timing markers, 20
timing traces, 120
tool set, 141
TQFP packages, 23
triangular waveform, 52, 71
trigger, 141

U

update_display(), 129
145

Index
update_system(), 129
USB busses, 43

V

valid data, 138
variable frequency interrupt

subsystem, 123
variables, 131
verifying your configuration, 136
virtual analyzer, 85, 141
virtual logic analyzers, 43
VME busses, 43

W

world-wide web, 26, 43

Z

zoom, waveform display, 19
146

© Copyright Hewlett-Packard
Company 1998
All Rights Reserved.

Reproduction, adaptation, or
translation without prior written
permission is prohibited, except as
allowed under the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the
U.S. Government is subject to
restrictions set forth in subparagraph
(C) (1) (ii) of the Rights in Technical
Data and Computer Software Clause
in DFARS 252.227-7013. Hewlett-
Packard Company, 3000 Hanover
Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government
Departments and Agencies are set
forth in FAR 52.227-19 (c) (1,2).

Document Warranty

The information contained in this
document is subject to change
without notice.

Hewlett-Packard makes no

warranty of any kind with regard

to this material, including, but

not limited to, the implied

warranties of merchantability or

fitness for a particular purpose.

Hewlett-Packard shall not be liable for
errors contained herein or for
damages in connection with the
furnishing, performance, or use of this
material.

Safety

This apparatus has been designed and
tested in accordance with IEC
Publication 1010, Safety
Requirements for Measuring
Apparatus, and has been supplied in a
safe condition. This is a Safety Class I
instrument (provided with terminal
for protective earthing). Before
applying power, verify that the correct
safety precautions are taken (see the
following warnings). In addition, note
the external markings on the
instrument that are described under
"Safety Symbols."
Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-21
Warning

• Before turning on the instrument,
you must connect the protective earth
terminal of the instrument to the
protective conductor of the (mains)
power cord. The mains plug shall only
be inserted in a socket outlet provided
with a protective earth contact. You
must not negate the protective action
by using an extension cord (power
cable) without a protective conductor
(grounding). Grounding one
conductor of a two-conductor outlet is
not sufficient protection.

• Only fuses with the required rated
current, voltage, and specified type
(normal blow, time delay, etc.) should
be used. Do not use repaired fuses or
short-circuited fuseholders. To do so
could cause a shock of fire hazard.

• Service instructions are for trained
service personnel. To avoid dangerous
electric shock, do not perform any
service unless qualified to do so. Do
not attempt internal service or
adjustment unless another person,
capable of rendering first aid and
resuscitation, is present.

• If you energize this instrument by an
auto transformer (for voltage
reduction), make sure the common
terminal is connected to the earth
terminal of the power source.

• Whenever it is likely that the ground
protection is impaired, you must make
the instrument inoperative and secure
it against any unintended operation.

• Do not operate the instrument in the
presence of flammable gasses or
fumes. Operation of any electrical
instrument in such an environment
constitutes a definite safety hazard.

• Do not install substitute parts or
perform any unauthorized
modification to the instrument.

• Capacitors inside the instrument
may retain a charge even if the
instrument is disconnected from its
source of supply.
97, U.S.A.
Safety Symbols

Instruction manual symbol: the
product is marked with this symbol
when it is necessary for you to refer to
the instruction manual in order to
protect against damage to the
product.

Hazardous voltage symbol.

Earth terminal symbol: Used to
indicate a circuit common connected
to grounded chassis.

WARNING

The Warning sign denotes a hazard. It
calls attention to a procedure,
practice, or the like, which, if not
correctly performed or adhered to,
could result in personal injury. Do not
proceed beyond a Warning sign until
the indicated conditions are fully
understood and met.

CAUTION

The Caution sign denotes a hazard. It
calls attention to an operating
procedure, practice, or the like, which,
if not correctly performed or adhered
to, could result in damage to or
destruction of part or all of the
product. Do not proceed beyond a
Caution symbol until the indicated
conditions are fully understood or
met.

!

Product Warranty

This Hewlett-Packard product has a
warranty against defects in material
and workmanship for a period of one
year from date of shipment. During
the warranty period, Hewlett- Packard
Company will, at its option, either
repair or replace products that prove
to be defective.

For warranty service or repair, this
product must be returned to a service
facility designated by Hewlett-
Packard.

For products returned to Hewlett-
Packard for warranty service, the
Buyer shall prepay shipping charges
to Hewlett- Packard and Hewlett-
Packard shall pay shipping charges to
return the product to the Buyer.
However, the Buyer shall pay all
shipping charges, duties, and taxes for
products returned to Hewlett-Packard
from another country.

Hewlett-Packard warrants that its
software and firmware designated by
Hewlett-Packard for use with an
instrument will execute its
programming instructions when
properly installed on that instrument.
Hewlett-Packard does not warrant
that the operation of the instrument
software, or firmware will be
uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not
apply to defects resulting from
improper or inadequate maintenance
by the Buyer, Buyer- supplied
software or interfacing, unauthorized
modification or misuse, operation
outside of the environmental
specifications for the product, or
improper site preparation or
maintenance.
No other warranty is expressed

or implied. Hewlett-Packard

specifically disclaims the implied

warranties of merchantability or

fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are the
buyer’s sole and exclusive remedies.
Hewlett-Packard shall not be liable for
any direct, indirect, special, incidental,
or consequential damages, whether
based on contract, tort, or any other
legal theory.

Assistance

Product maintenance agreements and
other customer assistance agreements
are available for Hewlett-Packard
products. For any assistance, contact
your nearest Hewlett-Packard Sales
Office.

Certification

Hewlett-Packard Company certifies
that this product met its published
specifications at the time of shipment
from the factory. Hewlett-Packard
further certifies that its calibration
measurements are traceable to the
United States National Institute of
Standards and Technology, to the
extent allowed by the Institute’s
calibration facility, and to the
calibration facilities of other
International Standards Organization
members.
About this edition

This is the HP 16600-Series Logic

Analysis System Demo Guide.

Publication number
16600-97003, March 1998
Printed in USA.

Print history is as follows:
First edition, March 1998

New editions are complete revisions of
the manual. Many product updates do
not require manual changes, and
manual corrections may be done
without accompanying product
changes. Therefore, do not expect a
one-to-one correspondence between
product updates and manual updates.

UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.

	HP 16600A-Series Logic Analysis System
	The HP�16600A-Series Logic Analysis System Reduces Time to Insight
	In This Book
	Contents
	Getting Started
	Connecting the demo board to analyzer
	Connecting the demo board to the emulation module

	Quickly Set Up the Analysis System
	Tracing Hundreds of Your Target’s Signals
	Connecting the analyzer to your target
	Using an HP logic analysis module

	Tracing Processor Code Execution with Source Code Correlation
	HP’s Processor Solutions
	Analysis Probes
	Designing Connections into Your Target System

	Emulation Modules
	Emulation Probes
	Source Correlation Tool Set
	Processor Solution Packages
	Processor Solution Information on the Web

	Using the Setup Assistant

	Quickly Find the Cause of Difficult HW/SW Interaction Problems
	Looking at Correlated Hardware/Software Traces
	Correlating processor execution with external buses
	Tracking hardware problems to their software causes
	Tracking software problems to their hardware causes

	Looking at Firmware Driver Issues
	Controlling and modifying processor execution
	Downloading code to RAM or Flash ROM

	Looking at Software Issues
	Analyzing system performance
	Using context store
	Tracking processor execution with caches turned on

	Quickly Find the Cause of Difficult Hardware Problems
	Capturing Very Deep Traces
	Using logic analyzers with deep memory

	About the MPC860 Demo Board
	Demo Board Hardware
	Introduction
	Configuring the Logic Analysis System for the Demo Board
	Labels and Format
	Clocking
	Standard inverse assembler
	Execution trace inverse assembler

	Inverse Assembler Preferences
	Standard inverse assembler
	Execution trace inverse assembler

	Inverse Assembler Filter
	Standard inverse assembler
	Execution trace inverse assembler

	Demo Board Connector Mapping
	Emulation Module Connector
	Logic Analyzer Connectors
	HP�16517A High-Speed Timing Connector
	Pattern Generator Connectors
	Oscilloscope Connections

	Demo Board Features
	Main Components
	CPU
	Memory Map
	Flash ROM
	SRAM
	LCD
	PLD

	Features and Problems
	Variable frequency interrupt subsystem
	LCD display with pattern generator connections
	Latch with a ground bounce problem
	D/A Converter
	CAN Controller
	Pushbutton
	Mictor38 probing technology

	Demo Board Firmware
	Introduction
	Overview of main()
	Functions and operations executed by main()
	What the Functions do
	Where the functions are located

	Overview of proc_specific
	Stimulate the Controller Area Network (CAN) Bus
	Stimulate the D/A Converter
	Stimulate the ground bounce register
	Run a piece of code in cache
	Return to normal ECS code

	Variables
	Variables of interest
	Markers, special variables

	Using the PowerPC 860 Emulation Module

	Recommended Demo Configuration
	Why use Recommended Demo Configuration
	What is the Recommended Demo Configuration
	Module Descriptions

	Verifying Your Configuration

	Concepts
	Timing Analysis vs. State Analysis in Logic Analyzers

	Glossary
	Index

